论文数学史上的三次危机 洪冬介.doc_第1页
论文数学史上的三次危机 洪冬介.doc_第2页
论文数学史上的三次危机 洪冬介.doc_第3页
论文数学史上的三次危机 洪冬介.doc_第4页
论文数学史上的三次危机 洪冬介.doc_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学史上的三次危机摘要:公元前580568年之间,希帕索斯发现了第一个无理数2,促使了第一次数学危机的发生。而后,在几何学中引进了不可通约量,使欧式几何变得更加完善。大约在公元前450年,莱布尼茨提出“无穷小量是零还是非零”促使了第二次数学危机的发生。而后,柯西提出极限理论,使微积分更完善。十九世纪下半叶,罗素悖论的提出,促使了第三次数学危机的发生。而后,弗芝克尔改进策梅罗的七条公理得出ZF公理系统,使得集合论得到了发展。关键词:危机 无理数 无穷小 罗素悖论引言: 数学,绝对不是只有加、减、乘、除那样简单的运算而已。它是一个早从“石器时代”就开始发展的一段历史,是一个演变和提升的过程。德国数学家汉克尔曾有一段精彩的论述:“在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人的创造所破坏。唯独数学,每一代人都在古老的大厦上添加一层楼。” 论述虽精彩,但数学史上的三次危机,也时时提醒着人们,古老的数学大厦,也是需要修理和加固的。正文:第一次数学危机I、历史文献 第一次危机发生在公元前580568年之间的古希腊,那时的数学家毕达哥拉斯建立了毕达哥拉斯学派。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人” 关于第一次危机还有一个十分悲情著名的事件: 毕达哥拉斯定理(即勾股定理)是毕达哥拉斯经过潜心研究得到的成果,当时他真是欣喜若狂,连声呼叫:“我得到了、我得到了,我得到了世界上最最伟大的定理!”为此,毕达哥拉斯下令宰杀了100头牛,把100个牛头作为感谢上帝的祭礼,所有的牛肉全部用来作庆功宴,百牛宴热闹非凡,除了自己的门徒以外,镇上的居民也涌来赴宴庆贺,一直闹腾了三天三夜。的确,没有任何哪一个定理能够比毕达哥拉斯定理的实际应用更广泛。 他有一个学生希帕索斯绝顶聪明,毕达哥拉斯在许多场合都讲希帕索斯的智慧超群,褒奖他的创新精神,把他竖起来成了一块碑。为了摸清勾股数的底子,毕达哥拉斯把筛选三元数组的任务交给了希帕索斯。 在研究过程中碰到了这样一个问题:正方形的边长为1,那么,对角线是多少呢?希帕索斯用了很长的时间,发现对角线的长,既不是整数,也不是两个整数之比。于是,他向毕达哥拉斯请教。 “什么?”毕达哥拉斯大吃一惊,“竟然有不是整数也不是整数之比的东西?” “是的!”希伯索斯说:“我已经证明了这一点!”双手把证明过程的手稿递给了老师。 毕达哥拉斯看过之后闷声不响、双手颤抖、直冒冷汗。良久,口气十分严厉地说“你给我保证,这件事不许外传,不许让第三个人知道!” 希伯索斯是个有思想、敢于坚持真理的人,他没有被权威吓倒,也没有放弃对的探究,一有机会就宣传这个无理数的存在,对此毕达哥拉斯恨之入骨,认为希伯索斯反叛毕达哥拉斯学派,便指使人要把希伯索斯当叛逆者处死。希伯索斯闻讯连忙跳上一艘刚启航的海船,结果还是让毕达歌拉斯的人追到大海上逮住了,希伯索斯据理力争,被这伙人拳打脚踢,打得是遍体鳞伤啊!最后,还把他残忍地扔进大海里淹死了。这就是数学史上最著名的事件:第一次数学危机。II、解决办法 这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的几何原本中。III、意义 第一次危机的产生最大的意义导致了无理数地产生。比如说我们现在说的2,不管怎么样都无法用整数来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。第二次数学危机I、历史文献 这次危机的萌芽出现在大约公元前450年,从历史或逻辑的观点来看,这次危机的发生带有必然性。 埃利亚数学家芝诺注意到由于对无限性的理解问题而产生的矛盾,提出了关于时空的有限与无限的4个悖论。 芝诺悖论的提出可能有更深刻的背景,不一定是专门针对数学的,但是它们在数学王国中却激起了一场轩然大波。它们说明了希腊人已经看到“无穷小”与“很小很小”的矛盾,但他们无法解决这些矛盾。其后果是:希腊证明几何中从此就排除了无穷小。 经过许多人多年的努力,终于在17世纪晚期,形成了无穷小演算微积分这门学科。牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:把各种有关问题的解法统一成微分法和积分法;有明确的计算步骤。微分法和积分法互为逆运算。由于运算的完整性和应用的广泛性,微积分成为解决问题的重要工具。同时,关于微积分基础的问题也越来越严重。 求速度为例,瞬时速度是v,当趋近于零时的值。是零,是很小的量,还是什么东西?无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成第二次动摇数学理论基础的危机。 无穷小量究竟是不是零?两种答案都会导致矛盾。牛顿对它曾作过三种不同解释:1669年说它是一种常量;1671年又说它是一个趋于零的变量;1676年又说它是“两个正在消逝的量的最终比”。但是,他始终无法解决上述矛盾。莱布尼兹试图用和无穷小量成比例的有限量的差分来代替无穷小量。但是,他也没有找到从有限量过渡到无穷小量的桥梁。 英国大主教贝克莱于1734年发表文章攻击说,流数(导数)“是消失了的量的鬼魂能消化得了二阶、三阶流数的人,是不会因吞食了神学论点就呕吐的。”他说,用忽略高阶无穷小而消除了原有的错误,“是依靠双重的错误得到了虽然不科学,但却是正确的结果。”贝克莱虽然也抓住了当时微积分、无穷小方法中一些不清楚、不合逻辑的问题,不过他是出自对科学的厌恶和对宗教的维护,而不是出自对科学的追求和探索。 当时一些数学家和其他学者,也批判过微积分的一些问题,指出其缺乏必要的逻辑基础。例如,罗尔曾说:“微积分是巧妙的谬论的汇集。”在那个勇于创造的时代的初期,科学中,逻辑中存在这样那样的问题,并不是个别现象。莱布尼兹在研究级教时,也认为格拉弟的结论: 1 1 + 1 1 = 1/2 是正确的,并解释说,这就象一件东西,今天放在这个人处,明天放在那个人处,于是相当一人一半。现在稍有些数学知识的人都知道,上述级数是不存在和值的。对于无穷级数来说,有些运算律并非都可以用,而要看条件。例如,对上面的级数,如果利用结合律,则有: 1 1 + 1 1 + =(1 1) + (1 1)+ = 0 + 0 + 0 + = 0 利用交换律和结合律,就有: 1 1 + 1 1 + = 1 + 1 + 1 + (1 1) + (1 1)+ = 1 + 1 + 1 + 0 + 0 + 0 + = 3 利用结合律和分配律,就有: 1 1 + 1 1 + = 1 - (1 1) - (1 1)- = 1 - 0 - 0 - = 1 由此可见,如果不顾条件的话,尽管是正确的定律也会导出荒谬的结果。18世纪的数学思想的确是不严密的、直观的。它强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性,如上述级数可等于1/2、0、3、1,等等;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。 所以说,第二次数学危机导源于微积分工具的使用。伴随着人们科学理论与实践认识的提高,十七世纪几乎在同一时期,微积分这一锐利无比的数学工具为牛顿、莱布尼兹各自独立发现。这一工具一问世,就显示出它的非凡威力。许许多多疑难问题运用这一工具后变得易如翻掌。但是不管是牛顿,还是莱布尼兹所创立的微积分理论都是不严格的。两人的理论都建立在无穷小分析之上,但他们对作为基本概念的无穷小量的理解与运用却是混乱的。因而,从微积分诞生时就遭到了一些人的反对与攻击。其中攻击最猛烈的是英国大主教贝克莱。II、解决办法 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。III、意义 第二次危机促使柯西有系统的发展了极限理论,使得微积分的应用更加的完善。第三次数学危机I、历史文献 十九世纪下半叶,康托尔创立了著名的集合论,在集合论刚产生时,曾遭到许多人的猛烈攻击。但不久这一开创性成果就为广大数学家所接受了,并且获得广泛而高度的赞誉。数学家们发现,从自然数与康托尔集合论出发可建立起整个数学大厦。因而集合论成为现代数学的基石。“一切数学成果可建立在集合论基础上”这一发现使数学家们为之陶醉。1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“借助集合论概念,我们可以建造整个数学大厦今天,我们可以说绝对的严格性已经达到了” 可是,好景不长。1903年,一个震惊数学界的消息传出:集合论是有漏洞的!这就是英国数学家罗素提出的著名的罗素悖论。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。 其实,在罗素之前集合论中就已经发现了悖论。如1897年,布拉利和福尔蒂提出了最大序数悖论。1899年,康托尔自己发现了最大基数悖论。但是,由于这两个悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。罗素悖论则不同。它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。如G.弗雷格在收到罗素介绍这一悖论的信后伤心地说:“一个科学家所遇到的最不合心意的事莫过于是在他的工作即将结束时,其基础崩溃了。罗素先生的一封信正好把我置于这个境地。”戴德金也因此推迟了他的什么是数的本质和作用一文的再版。可以说,这一悖论就象在平静的数学水面上投下了一块巨石,而它所引起的巨大反响则导致了第三次数学危机。 II、解决办法 危机产生后,数学家纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。”1908年,策梅罗在自已这一原则基础上提出第一个公理化集合论体系,后来经其他数学家改进,称为ZF系统。这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。除ZF系统外,集合论的公理系统还有多种,如诺伊曼等人提出的NBG系统等。公理化集合系统的建立,成功排除了集合论中出现的悖论,从而比较圆满地解决了第三次数学危机。现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集 ,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。III、意义 罗素悖论对数学而言有着更为深刻的影响。它使得数学基础问题第一次以最迫切的需要的姿态摆到数学家面前,导致了数学家对数学基础的研究。而这方面的进一步发展又极其深刻地影响了整个数学。如围绕着数学基础之争,形成了现代数学史上著名的三大数学流派,而各派的工作又都促进了数学的大发展等等。数学危机给数学发展带来了新的动力。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。结束语: 一般来讲,危机是一种激化的、非解决不可的矛盾。从哲学上来看,矛盾是无处不在的、不可避免的,即便以确定无疑著称的数学也不例外。 数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。在整个数学发展的历史上,贯穿着矛盾的斗争与解决。而在矛盾激化到涉及整个数学的基础时,就产生数学危机。 矛盾的消除,危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。 人类最早认识的是自然数。从引进零及负数就经历过斗争:要么引进这些数,要么大量的数的减法就行不通;同样,引进分数使乘法有了逆运算除法,否则许多实际问题也不能解决。但是接着又出现了这样的问题,是否所有的量都能用有理数来表示?于是发现无理数就导致了第一次数学危机,而危机的解决也就促使逻辑的发展和几何学的体系化。 方程的解导致了虚数的出现,虚数从一开始就被认为是“不实的”。可是这种不实的数却能解决实数所不能解决的问题,从而为自己争得存在的权利。 几何学的发展从欧几里得几何的一统天下发展到各种非欧几何学也是如此。在十九世纪发现了许多用传统方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论