




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 26September 2004 VNH2SP30 E AUTOMOTIVE FULLY INTEGRATED H BRIDGE MOTOR DRIVER Rev 1 Table 1 General Features I OUTPUT CURRENT 30A I 5V LOGIC LEVEL COMPATIBLE INPUTS I UNDERVOLTAGE AND OVERVOLTAGE SHUT DOWN I OVERVOLTAGE CLAMP I THERMAL SHUT DOWN I CROSS CONDUCTION PROTECTION I LINEAR CURRENT LIMITER I VERY LOW STAND BY POWER CONSUMPTION I PWM OPERATION UP TO 20 KHz I PROTECTION AGAINST LOSS OF GROUND AND LOSS OF VCC I CURRENT SENSE OUTPUT PROPORTIONAL TO MOTOR CURRENT I IN COMPLIANCE WITH THE 2002 95 EC EUROPEAN DIRECTIVE DESCRIPTION The VNH2SP30 E is a full bridge motor driver intended for a wide range of automotive applications The device incorporates a dual monolithic High Side drivers and two Low Side switches The High Side driver switch is designed using STMicroelectronic s well known and proven proprietary VIPower M0 technology that allows to efficiently integrate on the same die a true Power MOSFET with an intelligent signal protection circuitry Figure 1 Package The Low Side switches are vertical MOSFETs manufactured using STMicroelectronic s proprietary EHD STripFET process The three dice are assembled in MultiPowerSO 30 package on electrically isolated leadframes This package specifically designed for the harsh automotive environment offers improved thermal performance thanks to exposed die pads Moreover its fully symmetrical mechanical design allows superior manufacturability at board level The input signals INA and INB can directly interface to the microcontroller to select the motor direction and the brake condition The DIAGA ENA or DIAGB ENB when connected to an external pull up resistor enable one leg of the bridge They also provide a feedback digital diagnostic signal The normal condition operation is explained in the truth table on page 14 The CS pin allows to monitor the motor current by delivering a current proportional to its value The PWM up to 20KHz lets us to control the speed of the motor in all possible conditions In all cases a low level state on the PWM pin will turn off both the LSA and LSB switches When PWM rises to a high level LSA or LSB turn on again depending on the input pin state Table 2 Order Codes TypeRDS on IoutVccmax VNH2SP30 E 19 m max per leg 30 A 41 V MultiPowerSO 30 PackageTubeTape and Reel MultiPowerSO 30VNH2SP30 EVNH2SP30TR E VNH2SP30 E 2 26 Figure 2 Block Diagram Figure 3 Configuration Diagram Top View LOGIC VCC OUTA DIAGA ENAINBINA GNDA CSDIAGB ENB LSA CLAMP HSA LSA HSA OVERTEMPERATURE A OVERTEMPERATURE B OV UV CURRENT LIMITATION A OUTB GNDB LSB HSB CURRENT LIMITATION B DRIVER HSA DRIVER LSB DRIVER HSB DRIVER CLAMP HSB CLAMP LSBCLAMP LSA PWM 1 K1 K OUTAOUTA OUTA OUTB OUTB Nc VCC Nc INA ENA DIAGA Nc PWM CS ENB DIAGB INB Nc Nc VCC OUTB Nc Nc GNDA GNDA GNDA Nc VCC Nc GNDB GNDB GNDB 1 1516 30 VCC Heat Slug1 OUTB Heat Slug2 OUTA Heat Slug3 3 26 VNH2SP30 E Table 3 Pin Definitions And Functions Note GNDA and GNDB must be externally connected together Table 4 Pin Functions Description Pin NoSymbolFunction 1 25 30 OUTA Heat Slug2 Source of High Side Switch A Drain of Low Side Switch A 2 4 7 12 14 17 22 24 29NCNot connected 3 13 23 VCC Heat Slug1 Drain of High Side Switches and Power Supply Voltage 6ENA DIAGAStatus of High Side and Low Side Switches A Open Drain Output 5INAClockwise Input 8PWMPWM Input 9CSOutput of Current sense 11INBCounter Clockwise Input 10ENB DIAGBStatus of High Side and Low Side Switches B Open Drain Output 15 16 21 OUTB Heat Slug3 Source of High Side Switch B Drain of Low Side Switch B 26 27 28GNDASource of Low Side Switch A 18 19 20GNDBSource of Low Side Switch B NameDescription VCCBattery connection GNDA GNDB Power grounds must always be externally connected together OUTA OUTB Power connections to the motor INA INB Voltage controlled input pins with hysteresis CMOS compatible These two pins control the state of the bridge in normal operation according to the truth table brake to VCC Brake to GND clockwise and counterclockwise PWM Voltage controlled input pin with hysteresis CMOS compatible Gates of Low Side FETS get modulated by the PWM signal during their ON phase allowing speed control of the motor ENA DIAGA ENB DIAGB Open drain bidirectional logic pins These pins must be connected to an external pull up resistor When externally pulled low they disable half bridge A or B In case of fault detection thermal shutdown of a High Side FET or excessive ON state voltage drop across a Low Side FET these pins are pulled low by the device see truth table in fault condition CS Analog current sense output This output sources a current proportional to the motor current The information can be read back as an analog voltage across an external resistor VNH2SP30 E 4 26 Table 5 Block Descriptions see Block Diagram Table 6 Absolute Maximum Rating Figure 4 Current and Voltage Conventions NameDescription LOGIC CONTROL Allows the turn on and the turn off of the High Side and the Low Side switches according to the truth table OVERVOLTAGE UNDERVOLTAGEShut down the device outside the range 5 5V 16V for the battery voltage HIGH SIDE AND LOW SIDE CLAMP VOLTAGE Protect the High Side and the Low Side switches from the high voltage on the battery line in all configuration for the motor HIGH SIDE AND LOW SIDE DRIVER Drive the gate of the concerned switch to allow a proper RDS on for the leg of the bridge LINEAR CURRENT LIMITER Limits the motor current by reducing the High Side Switch gate source voltage when short circuit to ground occurs OVERTEMPERATURE PROTECTION In case of short circuit with the increase of the junction s temperature shuts down the concerned High Side to prevent its degradation and to protect the die FAULT DETECTION Signalize an abnormal behavior of the switches in the half bridge A or B by pulling low the concerned ENx DIAGx pin SymbolParameterValueUnit VCCSupply Voltage 41V ImaxMaximum Output Current continuous 30A IR Reverse Output Current continuous 30A IINInput Current INA and INB pins 10mA IENEnable Input Current DIAGA ENA and DIAGB ENB pins 10mA IpwPWM Input Current 10mA VCSCurrent Sense Maximum Voltage 3 15V VESD Electrostatic Discharge R 1 5k C 100pF CS pin logic pins output pins OUTA OUTB VCC 2 4 5 kV kV kV TjJunction Operating TemperatureInternally Limited C TcCase Operating Temperature 40 to 150 C TSTGStorage Temperature 55 to 150 C VCC INA GNDB IS IOUTA IINA VINA VCC VOUTA ISENSE VOUTB DIAGA ENA IENA IGND IOUTB INB IINB DIAGB ENB IENB VENB VENA VINB VSENSE OUTA OUTB PWM CS Ipw Vpw GNDA GND 5 26 VNH2SP30 E Table 7 Thermal Data See MultiPowerSO 30 Thermal Data section page ELECTRICAL CHARACTERISTICS VCC 9V up to 16V 40 C Tj 150 C unless otherwise specified Table 8 Power Table 9 Logic Inputs INA INB ENA ENB SymbolParameterTest ConditionsMin Typ Max Unit VCCOperating supply voltage5 516V ISSupply Current Off state INA INB PWM 0 Tj 25 C VCC 13V INA INB PWM 0 1230 60 A A On state INA or INB 5V no PWM10mA RONHS Static High Side resistance IOUT 15A Tj 25 C IOUT 15A Tj 40 to 150 C 14 28 m m RONLS Static Low Side resistance IOUT 15A Tj 25 C IOUT 15A Tj 40 to 150 C 5 10 m m Vf High Side Free wheeling Diode Forward Voltage If 15A0 81 1V IL off High Side Off State Output Current per channel Tj 25 C VOUTX ENX 0V VCC 13V Tj 125 C VOUTX ENX 0V VCC 13V 3 5 A A IRM Dynamic Cross conduction Current IOUT 15A see fig 8 0 7A SymbolParameterTest ConditionsMin Typ Max Unit VILInput Low Level Voltage Normal operation DIAGX ENX pin acts as an input pin 1 25V VIHInput High Level Voltage Normal operation DIAGX ENX pin acts as an input pin 3 25V VIHYSTInput Hysteresis Voltage Normal operation DIAGX ENX pin acts as an input pin 0 5V VICLInput Clamp Voltage IIN 1mA IIN 1mA 5 5 1 0 6 3 0 7 7 5 0 3 V V IINLInput CurrentVIN 1 25 V1 A IINHInput CurrentVIN 3 25 V10 A VDIAG Enable Output Low Level Voltage Fault operation DIAGX ENX pin acts as an output pin IEN 1mA 0 4V VNH2SP30 E 6 26 ELECTRICAL CHARACTERISTICS continued Table 10 PWM Table 11 Switching VCC 13V RLOAD 0 87 Table 12 Protection And Diagnostic SymbolParameterTest ConditionsMinTypMaxUnit VpwlPWM Low Level Voltage1 25V IpwlPWM Pin CurrentVpw 1 25V1 A VpwhPWM High Level Voltage3 25V IpwhPWM Pin CurrentVpw 3 25V10 A VpwhhystPWM Hysteresis Voltage0 5V VpwclPWM Clamp Voltage Ipw 1 mA Ipw 1 mA VCC 0 3 6 0 VCC 0 7 4 5 VCC 1 0 3 0 V V CINPWM PWM Pin Input Capacitance VIN 2 5V25pF SymbolParameterTest ConditionsMinTypMaxUnit fPWM Frequency020kHz td on Turn on Delay TimeInput rise time 1 s see fig 8 250 s td off Turn off Delay TimeInput rise time 1 s see fig 8 250 s trRise Time see fig 7 11 6 s tfFall Time see fig 7 1 22 4 s tDEL Delay Time During Change of Operating Mode see fig 6 3006001800 s trr High Side Free Wheeling Diode Reverse Recovery Time see fig 9 110ns toff min PWM Minimum off time 9V VCC 16V 40 C Tj 150 C IOUT 15A 6 s SymbolParameterTest ConditionsMinTypMaxUnit VUSD Undervoltage Shut down Undervoltage Reset4 7 5 5V V VOVOvervoltage Shut down161922V ILIMHigh Side Current Limitation305070A VCLP Total Clamp Voltage VCC to GND IOUT 15A434854V TTSD Thermal Shut down Temperature VIN 3 25 V150175200 C TTRThermal Reset Temperature135 C THYSTThermal Hysteresis715 C 7 26 VNH2SP30 E ELECTRICAL CHARACTERISTICS continued Table 13 Current Sense 9V VCC 16V Note Analog sense current drift is deviation of factor K for a given device over 40 C to 150 C and 9V VCC8A RSENSE 1 5k Tj 40 to 150 C 10 10 ISENSEO Analog Sense Leakage Current IOUT 0A VSENSE 0V Tj 40 to 150 C 065 A INAINBDIAGA ENADIAGB ENBOUTAOUTBCSOperating mode 1111HHHigh Imp Brake to VCC 1011HLISENSE IOUT KClockwise CW 0111LHISENSE IOUT K Counterclockwise CCW 0011LLHigh Imp Brake to GND VNH2SP30 E 8 26 Figure 5 Typical Application Circuit For Dc To 20khz PWM OperationShort Circuit Protection In case of a fault condition the DIAGX ENX pin is considered as an output pin by the device The fault conditions are overtemperature on one or both high sides for example if a short to ground occurs as it could be the case described in line 1 and 2 in the table below short to battery condition on the output saturation detection on the Low Side Power MOSFET Possible origins of fault conditions may be OUTA is shorted to ground overtemperature detection on high side A OUTA is shorted to VCC Low Side Power MOSFET saturation detection When a fault condition is detected the user can know which power element is in fault by monitoring the INA INB DIAGA ENA and DIAGB ENB pins In any case when a fault is detected the faulty leg of the bridge is latched off To turn on the respective output OUTX again the input signal must rise from low to high level Table 15 Truth Table In Fault Conditions Detected On OUTA M C Reg 5V 5V HSAHSB LSALSB VCC DIAGA ENA CS INA PWM OUTA OUTB D S G b N MOSFET 3 3K 1K 1K 1K 10K 33nF 1 5K VCC 100K DIAGB ENB 5V 1K 3 3K INB 1K GNDAGNDB 50uF INAINBDIAGA ENADIAGB ENBOUTAOUTBCS 1101OPENHHigh Imp 1001OPENLHigh Imp 0101OPENHIOUTB K 0001OPENLHigh Imp XX00OPENOPENHigh Imp X101OPENHIOUTB K X001OPENLHigh Imp Fault InformationProtection Action 9 26 VNH2SP30 E Table 16 Electrical Transient Requirements Reverse Battery Protection Three possible solutions can be thought of a a Schottky diode D connected to VCC pin b a N channel MOSFET connected to the GND pin see Typical Application Circuit on page 8 c a P channel MOSFET connected to the VCC pin The device sustains no more than 30A in reverse battery conditions because of the two Body diodes of the Power MOSFETs Additionally in reverse battery condition the I Os of VNH2SP30 E will be pulled down to the VCC line approximately 1 5V Series resistor must be inserted to limit the current sunk from the microcontroller I Os If IRmax is the maximum target reverse current through C I Os series resistor is ISO T R 7637 1 Test Pulse Test Level I Test Level II Test Level III Test Level IV Test Levels Delays and Impedance 1 25V 50V 75V 100V2ms 10 2 25V 50V 75V 100V0 2ms 10 3a 25V 50V 100V 150V0 1 s 50 3b 25V 50V 75V 100V0 1 s 50 4 4V 5V 6V 7V100ms 0 01 5 26 5V 46 5V 66 5V 86 5V400ms 2 ISO T R 7637 1 Test Pulse Test Levels Result I Test Levels Result II Test Levels Result III Test Levels Result IV 1CCCC 2CCCC 3aCCCC 3bCCCC 4CCCC 5CEEE ClassContents CAll functions of the device are performed as designed after exposure to disturbance E One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device R VIOsVCC IRmax VNH2SP30 E 10 26 Figure 6 Definition Of The Delay Times Measurement Figure 7 Definition Of The Low Side Switching Times t t VINB VINA t PWM t ILOAD tDEL tDEL tf PWM t t VOUTA B 20 90 80 10 tr 11 26 VNH2SP30 E Figure 8 Definition Of The High Side Switching Times Figure 9 Definition Of Dynamic Cross Conduction Current During A Pwm Operation t t VOUTA VINA 90 10 tD on tD off t t IMOTOR PWM t VOUTB t ICC trr IRM INA 1 INB 0 VNH2SP30 E 12 26 Figure 10 Waveforms in full bridge operation NORMAL OPERATION DIAGA ENA 1 DIAGB ENB 1 INA INB PWM OUTA OUTB IOUTA OUTB DIAGA ENA DIAGB ENB DIAGB ENB INA INB PWM OUTA OUTB DIAGA ENA NORMAL OPERATION DIAGA ENA 1 DIAGB ENB 0 and DIAGA ENA 0 DIAGB ENB 1 normal operationOUTA shorted to groundnormal operation INA INB Tj DIAGA ENA DIAGB ENB ILIM TTSD TTR Tj TTR CURRENT LIMITATION THERMAL SHUTDOWN or OUTA SHORTED TO GROUND CS CS CS IOUTA OUTB IOUTA OUTB tDELtDEL LOAD CONNECTED BETWEEN OUTA OUTB LOAD CONNECTED BETWEEN OUTA OUTB CS BEHAVIOUR DURING PWM MODE WILL DEPEND ON PWM FREQUENCY AND DUTY CYCLE 13 26 VNH2SP30 E Figure 11 Waveforms In Full Bridge Operation continued normal operation OUTA shorted to VCCnormal operation undervoltage shutdown INA INB OUTA OUTB DIAGB ENB DIAGA ENA OUTA shorted to VCC and undervoltage shutdown CSVOUTB undefined undefined VNH2SP30 E 14 26 Figure 12 Half bridge Configuration Figure 13 Multi motors Configuration M OUTA OUTAOUTBOUTB VCC PWM DIAGA ENA INA DIAGB ENB INB GNDBGNDA GNDBGNDA PWM DIAGA ENA INA DIAGB ENB INB The VNH2SP30 E can be used as a high power half bridge driver achieving an On resistance per leg of 9 5m Suggested configuration is the following M2 OUTA OUTAOUTBOUTB VCC PWM DIAGA ENA INA DIAGB ENB INB GNDBGNDA GNDBGNDA PWM DIAGA ENA INA DIAGB ENB INB M1M3 The VNH2SP30 E can easily be designed in multi motors driving applications such as seat positioning systems where only one motor must be driven at a time DIAGX ENX pins allow to put unused half bridges in high impedance Suggested configuration is the following 15 26 VNH2SP30 E Figure 14 On State Supply Current Figure 15 High Level Input Current Figure 16 Input High Level Voltage Figure 17 Off State Supply Current Figure 18 Input Clamp Voltage Figure 19 Input Low Level Voltage 50 250255075100125150175 Tc C 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 Is mA Vcc 13V INA or INB 5V 50 250255075100125150175 Tc C 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 Iinh A Vin 3 25V 50 250255075100125150175 Tc C 2 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 Vih V 50 250255075100125150175 Tc C 0 5 10 15 20 25 30 35 40 45 50 Is A Vcc 13V 50 250255075100125150175 Tc C 5 5 25 5 5 5 75 6 6 25 6 5 6 75 7 7 25 7 5 7 75 8 Vicl V Iin 1mA 50 250255075100125150175 Tc C 1 1 25 1 5 1 75 2 2 25 2 5 2 75 3 Vil V VNH2SP30 E 16 26 Figure 20 Input Hysteresis Voltage Figure 21 Delay Time during change of operation mode Figure 22 High Level Enable Voltage Figure 23 High Level Enable Pin Current Figure 24 Enable Clamp Voltage Figure 25 Low Level Enable Voltage 50 250255075100125150175 Tc C 0 0 25 0 5 0 75 1 1 25 1 5 1 75 2 Vihyst V Vcc 13V 50 250255075100125150175 Tc C 0 100 200 300 400 500 600 700 800 900 1000 tdel s 50 250255075100125150175 Tc C 1 6 1 8 2 2 2 2 4 2 6 2 8 3 3 2 3 4 3 6 Venh V Vcc 9V 50 250255075100125150175 Tc C 0 1 2 3 4 5 6 7 8 Ienh A Ven 3 25V 50 250255075100125150175 Tc C 1 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 Vencl V Ien 1mA 50 250255075100125150175 Tc C 1 1 2 1 4 1 6 1 8 2 2 2 2 4 2 6 2 8 3 Venl V Vcc 9V 17 26 VNH2SP30 E Figure 26 PWM High Level Voltage Figure 27 PWM High Level Current Figure 28 Undervoltage Shutdown Figure 29 PWM Low Level Voltage Figure 30 Overvoltage Shutdown Figure 31 Current Limitation 50 250255075100125150175 Tc C 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 Vpwh V Vcc 9V 50 250255075100125150175 Tc C 0 1 2 3 4 5 6 7 8 Ipwh A Vcc 9V Vpw 3 25V 50 250255075100125150175 Tc C 0 1 2 3 4 5 6 7 8 Vusd V 50 250255075100125150175 Tc C 1 1 2 1 4 1 6 1 8 2 2 2 2 4 2 6 Vpwl V Vcc 9V 50 250255075100125150175 Tc C 10 12 5 15 17 5 20 22 5 25 27 5 30 Vov V 50 250255075100125150175 Tc C 30 35 40 45 50 55 60 65 70 75 80 Ilim A VNH2SP30 E 18 26 Figure 32 On State High Side Resistance Vs Tcase Figure 33 Turn on Delay Time Figure 34 Output Voltage Rise Time Figure 35 On State Low Side Resistance Vs Tcase Figure 36 Turn off Delay Time Figure 37 Output Voltage Fall Time 50 250255075100125150175 Tc C 0 5 10 15 20 25 30 35 40 Ronhs mOhm Vcc 9V 16V Iout 15A 50 250255075100125150175 Tc C 60 80 100 120 140 160 180 200 220 240 260 td on s 50 250255075100125150175 Tc C 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2 tr s 50 250255075100125150175 Tc C 0 5 10 15 20 25 30 35 40 Ronls mOhm Iload 12A Vcc 9V 13V 18V 50 250255075100125150175 Tc C 100 110 120 130 140 150 160 170 180 190 200 td off s 50 250255075100125150175 Tc C 0 1 2 3 4 5 6 7 8 tf s 19 26 VNH2SP30 E MultiPowerSO 30 Thermal Data Figure 38 MultiPowerSO 30 PC Board Figure 39 Chipset Configuration Figure 40 Auto and mutual Rthj amb Vs PCB copper area in open box free air condition according to page 20 definitions Layout condition of Rth and Zth measurements PCB FR4 area 58mm x 58mm PCB thickness 2mm Cu thickness 35 m Copper areas from minimum pad lay out to 16cm2 HIGH SIDE CHIP HSAB LOW SIDE CHIP A LOW SIDE CHIP B LSALSB 0 5 10 15 20 25 30 35 40 45 05101520 cm2 of Cu Area refer to PCB layout C W RthHS RthLS RthHSLS RthLSLS VNH2SP30 E 20 26 Table 17 Thermal Calculation In Clockwise And Anti clockwise Operation In Steady state Mode Thermal Resistances Definition values according to the PCB heatsink area RthHS RthHSA RthHSB High Side Chip Thermal Resistance Junction to Ambient HSA or HSB i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江宁波市卫生健康委部分直属事业单位公开招聘高层次人才69人(第二批)模拟试卷附答案详解(典型题)
- 2025江苏盐城市妇幼保健院招聘编外专业技术人员16人考前自测高频考点模拟试题(含答案详解)
- 2025湖南娄底冷水江市城发实业有限公司公开招聘实验室试验员的考前自测高频考点模拟试题及答案详解(必刷)
- 2025黑龙江双鸭山市宝清县招聘就业见习人员917人模拟试卷及1套参考答案详解
- 2025湖北恩施州巴东县信陵镇人民政府公益性岗位人员招聘8人考前自测高频考点模拟试题及答案详解(易错题)
- 2025年中国安能集团置业有限公司招聘12人笔试题库历年考点版附带答案详解
- 2025江西吉水县某行政单位招聘4人模拟试卷有完整答案详解
- 2025年蚌埠市第二人民医院招聘5人模拟试卷及1套完整答案详解
- 2025年“才聚齐鲁成就未来”山东高速集团有限公司社会招聘224人笔试题库历年考点版附带答案详解
- 2025贵州织金翔盛工业发展有限公司招聘考前自测高频考点模拟试题及答案详解(夺冠)
- NB-T+35056-2015-水电站压力钢管设计规范
- 2024年垃圾分类知识考试题库及答案
- 中国法律史-第一次平时作业-国开-参考资料
- 平行四边形的面积集体备课发言稿
- 大学美育(第二版) 课件 第八单元:建筑艺术
- 思想政治教育专业大学生职业生涯规划书
- 医院科研经费管理办法
- 2023年广州海洋地质调查局招聘社会在职人员高频考点题库(共500题含答案解析)模拟练习试卷
- 运用PDCA循环降低住院患者雾化吸入的不规范率品管圈成果汇报
- 感触最深的一件事七年级作文大全600字
- 中建二局“大商务”管理实施方案20200713(终稿)
评论
0/150
提交评论