




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Electrical Resistance where is the electrical resistivity Resistance Wt L I V R Unit ohms V L t W I Material with resistivity 2 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Resistivity Range of Materials Si with dopants SiO2 Si3N4 1 m 100 cm Adding parts billion to parts thousand of dopants to pure Si can change resistivity by 8 orders of magnitude 3 Professor N Cheung U C Berkeley Lecture 3EE143 F05 The Si Atom The Si Crystal High performance semiconductor devices require defect free crystals diamond structure 4 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Top of valence band Bottom of conduction band electron hole Energy gap 1 12 eV Carrier Concentrations of Intrinsic undoped Si n electron conc p hole conc ni 5 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Maximum impurity allowed is equivalent to 1 mg of sugar dissolved in an Olympic size swimming pool Maximum impurity allowed is equivalent to 1 mg of sugar dissolved in an Olympic size swimming pool 99 999999999 so99 999999999 so called eleven nines called eleven nines Purity of DevicePurity of Device Grade Grade Si Si waferwafer 6 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Donors P As SbAcceptors B Al Ga In Dopants in Si By substituting a Si atom with a special impurity atom Column V or Column III element a conduction electron or hole is created 7 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Energy Band Description of Electrons and Holes Contributed by Donors and Acceptors EC bottom of conduction band EV top of valence band ED Donor energy level EA Acceptor energy level At room temperature the dopants of interest are essentially fully ionized DonorsDonors AcceptorsAcceptors 8 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Semiconductor with both acceptors and donors has 4 kinds of charge carriers Ionized Donor Ionized Acceptor Immobile they DO NOT contribute to current flow with electric field is applied However they affect the local electric field Hole Electron Mobile they contribute to current flow with electric field is applied 9 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Even NAis not equal to ND microscopic volume surrounding any position x has zero net charge Si atom Ionized Donor Ionized Acceptor Hole Electron electron hole pair due to transition from valence band to conduction band Charge Neutrality Condition Valid for homogeneously doped semiconductor at thermal equilibrium 10 Professor N Cheung U C Berkeley Lecture 3EE143 F05 How to Calculate Electron and Hole Concentrations for homogeneous Semiconductor n electron concentration cm 3 p hole concentration cm 3 ND donor concentration cm 3 NA acceptor concentration cm 3 1 Charge neutrality condition ND p NA n 2 At thermal equilibrium np ni2 Law of Mass Action Note Carrier concentrations depend on NET dopant concentration ND NA Assume completely ionized 11 Professor N Cheung U C Berkeley Lecture 3EE143 F05 N type and P type Material If ND NA so that ND NA ni AD NNn AD i NN n p 2 and n p material is n type If NA ND so that NA ND ni DA NNp DA i NN n n 2 and p n material is p type 12 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Carrier Drift When an electric field is applied to a semiconductor mobile carriers will be accelerated by the electrostatic force This force superimposes on the random thermal motion of carriers E g Electrons drift in the direction opposite to the E field Current flows Average drift velocity v E Carrier mobility 1 2 3 4 5 electron E 1 2 3 4 5 electron E 0 13 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Carrier Mobility Mobile carriers are always in random thermal motion If no electric field is applied the average current in any direction is zero Mobility is reduced by collisions with the vibrating atoms phonon scattering deflection by ionized impurity atoms Si As B 14 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Mobile charge carrier drift velocity is proportional to applied E field n p Carrier Mobility v E Mobility depends on ND NA Unit cm2 V s 15 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Electrical Conductivity When an electric field is applied current flows due to drift of mobile electrons and holes EqnnvqJ nnn electron current density hole current density EqppvqJ ppp total current density pn pnpn qpqn EJ EqpqnJJJ conductivity 16 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Unit ohm cm Electrical Resistivity pn qpqn 11 for n type n qn 1 for p type p qp 1 Note This plot does not apply for compensated material 17 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Consider a Si sample doped with 1016 cm3Boron What is its electrical resistivity Answer NA 1016 cm3 ND 0 NA ND p type p 1016 cm3and n 104 cm3 Example Calculation cm 4 1 450 10 106 1 11 1 1619 ppn qpqpqn From vs NA ND plot 18 Professor N Cheung U C Berkeley Lecture 3EE143 F05 The sample is converted to n type material by adding more donors than acceptors and is said to be compensated Example Dopant Compensation Consider the same Si sample with 1016 cm3Boron doped additionally with 1017 cm3Arsenic What is the new resistivity Answer NA 1016 cm3 ND 1017 cm3 ND NA n type n 9x1016 cm3and p 1 1x103 cm3 cm 12 0 600 109 106 1 11 1 1619 npn qnqpqn 19 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Summary of Doping Terminology intrinsic semiconductor undoped semiconductor extrinsic semiconductor doped semiconductor donor impurity atom that increases the electron concentration group V elements P As in Si acceptor impurity atom that increases the hole concentration group III elements B In in Si n type material semiconductor containing more electrons than holes p type material semiconductor containing more holes than electrons majority carrier the most abundant mobile carrier in a semiconductor minority carrier the least abundant mobile carrier in a semiconductor mobile carriers Charge carriers that contribute to current flow when electric field is applied 20 Professor N Cheung U C Berkeley Lecture 3EE143 F05 Sheet Resistance RS The Rsvalue for a given layer e g doped Si metals in an IC or MEMS technology is used for design and layout of resistors for estimating values of parasitic resistance in a device or circuit W L R Wt L R s t Rs Rsis the resistance when W L unit in ohms square if is independent of depth x 21 Professor N Cheung U C Berkeley Lecture 3EE143 F05 RS when x is function of depth x V L t W I 1 dx 2 dx 3 dx n dx dx dx dxdxdx R 1 n21 n321S t pn tS dxxpxqxnxq dxx R 0 0 1 1 For a continuous x function depth x 22 Professor N Cheung U C Berkeley Lecture 3EE143 F05 R 2 6Rs Electrical Resistance of Layo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年林业局笔试模拟题解析集
- 2025年中学生实验室安全题及答案
- 2025年康复辅具技术基础模拟题
- 2025年客车安全操作手册及考试题
- 2025年气候变化与环境考古硕士研究生入学考试试题及答案解析
- 2025年铝门窗安装工程师职业技术水准考核试题及答案解析
- 课件中插入小程序
- 2025年机动车驾驶员从业资格考试试题及答案解析
- 2025年计算机网络技术招聘考试高频考题集
- 2025年高危作业安全题库
- 2020公路工程质量检验评定标准第二册机电工程
- 金矿居间合同协议书
- 酒店安全考试试题及答案
- 人教版小学四年级上册数学 第7单元 条形统计图 教案
- 中医适宜技术在妇科的应用
- 乡土中国考试题及答案
- 运输公司八项管理制度
- 工程进度款申请书
- 新能源光伏电站组件产业园项目可行性研究报告
- 教育全球化背景下的学校品牌打造
- 汽车维修企业安全生产制度模版(3篇)
评论
0/150
提交评论