




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档几种不同类型行列式的计算摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。本文先阐述行列式的基本性质,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。关键字:排列;行列式;范德蒙行列式;拉普拉斯定理;加边法(升阶法);数学归纳法。The calculation method of N determinant Abstract: Determinant is an basic and important subject in advanced algebra ,it is very useful in mathematic. It is very important to know how to calculate determinant. The paper first introduced the basic nature of determinant,then introduced some methods, Finally,with the other determinant of knowledge on the links in several other ways.,through this series of methods will futher enhance our understanding o the determinat,on our learning will bring very useful help.Keywords: Determinant; Vandermonde Determinant;Matrix; Eigenvalue; Laplace theorem;Factorial;Auxiliary determinant method 前言行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题方法进行总结归纳。我们可以这样来理解行列式,它是在实数(复数)的基础上定义的一个独立结构。作为行列式本身而言,我们可以发现它的二个基本特征,当行列式是一个三角形行列式(上三角或下三角形行列式,对角形行列式也是三角形行列式的特殊形式)时,计算将变得十分简单,于是将一个行列式化为三角形行列式便是行列式计算的一个基本思想。这也是化三角形法的思想精髓。行列式的另一特征便是它的递归性,即一个行列式可以用比它低阶的一系列行列式表示,于是对行列式降阶从而揭示其内部规律也是我们的一个基本想法,即递推法。这两种方法也经常一起使用。而其它方法如:加边法、降阶法、数学归纳法、拆行(列)法、析因法等可以看成是它们衍生出的具体方法。作为特殊的行列式当然也有其它方法,如用范德蒙公式计算某些行列式。上面这些方法是基于行列式这一结构内部的,作为行列式与其它知识的联系,特别是多项式、矩阵的密切关系,我们将得到一些其它的方法,这将在文中一一讨。第一章 行列式的定义及性质1.1 行列式的定义1. 级排列(1) 基本概念:排列,反序,反序数,排列的奇偶性(2) 主要结论级排列共有个,其中奇偶排列各占一半对换改变排列的奇偶性任意一个级排列都可以经过一些对换变成自然顺序,并且所作对换的个数与这个排列有相同的奇偶性2. 级行列式的概念其中1.2 行列式的性质 行列式的性质(1) 有关行列式的转置行列互换,行列式不变(2) 有关行(列)的变换互换行(列),行列式反号用一个数乘某行(列),就等于用这个数乘这个行列式把某行(列)的倍数加到另一行(列),行列式不变(3) 有关按行(列)分解为两个行列式的和如果某行(列)是两组数的和,那么行列式可以写成两个行列式的和,这两个行列式的这一行(列)分别是第一组数与第二组数,而其它各行(列)都与原行列式相同(4) 有关行列式等于零两行(列)成比例,行列式等于零4. 行列式依行依列展开(1) 基本概念:子式,余子式,代数余子式(2) 主要公式5. 克拉默规则若线性方程组 的行列式 ,则它有唯一解其中是把的第列换成常数项 所得的行列式第二章 行列式的计算n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(按照某一列或某一行展开完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。2.1 利用行列式定义直接计算例 计算行列式 解 Dn中不为零的项用一般形式表示为 .该项列标排列的逆序数t(n1 n21n)等于,故 2.2 利用行列式的性质计算例: 一个n阶行列式的元素满足 则称Dn为反对称行列式, 证明:奇数阶反对称行列式为零. 证明:由知,即故行列式Dn可表示为,由行列式的性质, 当n为奇数时,得Dn =Dn,因而得Dn = 0.2.3 化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。例1 计算行列式解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算例2 计算n阶行列式解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n列之和全同将第2,3,n列都加到第一列上,就可以提出公因子且使第一列的元素全是1例3 计算n阶行列式 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,n列都加到第1列上,行列式不变,得例4:浙江大学2004年攻读硕士研究生入学考试试题第一大题第2小题(重庆大学2004年攻读硕士研究生入学考试试题第三大题第1小题)的解答中需要计算如下行列式的值:分析显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。注意到从第1列开始;每一列与它一列中有n-1个数是差1的,根据行列式的性质,先从第n-1列开始乘以1加到第n列,第n-2列乘以1加到第n-1列,一直到第一列乘以1加到第2列。然后把第1行乘以1加到各行去,再将其化为三角形行列式,计算就简单多了。解:2.4降阶法(按行(列)展开法)降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例1、计算20阶行列式分析这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至化许许多多个2阶行列式计算,需进行20!*201次加减法和乘法运算,这人根本是无法完成的,更何况是n阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。注意到此行列式的相邻两列(行)的对应元素仅差1,因此,可按下述方法计算:解:例2 计算n阶行列式解 将Dn按第1行展开.例3 计算n(n2)阶行列式解 按第一行展开,得 再将上式等号右边的第二个行列式按第一列展开,则可得到2.5递(逆)推公式法递推法是根据行列式的构造特点,建立起 与 的递推关系式,逐步推下去,从而求出 的值。 有时也可以找到 与 , 的递推关系,最后利用 , 得到 的值。 注意用此方法一定要看行列式是否具有较低阶的相同结构如果没有的话,即很难找出递推关系式,从而不能使用此方法。例1 计算行列式.解:将行列式按第列展开,有,得 。同理得 , 例2 计算解同理联立解得当时,例3 计算n阶行列式解 首先建立递推关系式按第一列展开,得:这里与有相同的结构,但阶数是的行列式现在,利用递推关系式计算结果对此,只需反复进行代换,得:因,故最后,用数学归纳法证明这样得到的结果是正确的当时,显然成立设对阶的情形结果正确,往证对n阶的情形也正确由、可知,对n阶的行列式结果也成立根据归纳法原理,对任意的正整数n,结论成立例4 证明n阶行列式证明 按第一列展开,得其中,等号右边的第一个行列式是与有相同结构但阶数为的行列式,记作;第二个行列式,若将它按第一列展开就得到一个也与有相同结构但阶数为的行列式,记作这样,就有递推关系式:因为已将原行列式的结果给出,我们可根据得到的递推关系式来证明这个结果是正确的当时,结论正确当时,结论正确设对的情形结论正确,往证时结论也正确由 可知,对n阶行列式结果也成立 根据归纳法原理,对任意的正整数n,结论成立例5、2003年福州大学研究生入学考试试题第二大题第10小题要证如下行列式等式:(虽然这是一道证明题,但我们可以直接求出其值,从而证之。)分析此行列式的特点是:除主对角线及其上下两条对角线的元素外,其余的元素都为零,这种行列式称“三对角”行列式1。从行列式的左上方往右下方看,即知Dn-1与Dn具有相同的结构。因此可考虑利用递推关系式计算。证明:Dn按第1列展开,再将展开后的第二项中n-1阶行列式按第一行展开有:这是由Dn-1 和Dn-2表示Dn的递推关系式。若由上面的递推关系式从n阶逐阶往低阶递推,计算较繁,注意到上面的递推关系式是由n-1阶和n-2阶行列式表示n阶行列式,因此,可考虑将其变形为:或现可反复用低阶代替高阶,有:同样有:因此当时由(1)(2)式可解得:,证毕。2.6 利用范德蒙行列式根据行列式的特点,适当变形(利用行列式的性质如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; .) 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。 例1 计算行列式解 把第1行的1倍加到第2行,把新的第2行的1倍加到第3行,以此类推直到把新的第n1行的1倍加到第n行,便得范德蒙行列式例2 计算阶行列式其中解 这个行列式的每一行元素的形状都是,0,1,2,n即按降幂排列,按升幂排列,且次数之和都是n,又因,若在第i行(1,2,n)提出公因子,则D可化为一个转置的范德蒙行列式,即例3 计算行列式.解:例4 计算行列式 解 作如下行列式,使之配成范德蒙行列式 = 易知等于中 的系数的相反数,而中 的系数为 ,因此, 例5、 计算n阶行列式解:显然该题与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质把它化为范德蒙行列式的类型。先将的第n行依次与第n-1行,n-2行,,2行,1行对换,再将得到到的新的行列式的第n行与第n-1行,n-2行,,2行对换,继续仿此作法,直到最后将第n行与第n-1行对换,这样,共经过(n-1)+(n-2)+2+1=n(n-1)/2次行对换后,得到上式右端的行列式已是范德蒙行列式,故利用范德蒙行列式的结果得: 2.7 加边法(升阶法)加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。它要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。根据需要和原行列式的特点选取所加的行和列。加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。 例1 计算n阶行列式 解: 例2 计算n(n2)阶行列式,其中解 先将添上一行一列,变成下面的阶行列式:显然,将的第一行乘以后加到其余各行,得因,将上面这个行列式第一列加第i(,)列的倍,得:2.8 数学归纳法当 与 是同型的行列式时,可考虑用数学归纳法求之。 一般是利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明。因此,数学归纳法一般是用来证明行列式等式。因为给定一个行列式,要猜想其值是比较难的,所以是先给定其值,然后再去证明。(数学归纳法的步骤大家都比较熟悉,这里就不再说了)例1 计算n阶行列式解:用数学归纳法. 当n = 2时, 假设n = k时,有 则当n = k+1时,把Dk+1按第一列展开,得由此,对任意的正整数n,有例2 计算行列式.解:,于是猜想 .证明:对级数用第二数学归纳法证明.时,结论成立.假设对级数小于时,结论成立.将级行列式按第行展开,有.例3 计算行列式解:猜测:证明(1)n = 1, 2, 3 时,命题成立。假设nk 1 时命题成立,考察n=k的情形:故命题对一切自然数n成立。2.9 拆开法拆项法是将给定的行列式的某一行(列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,把一个复杂的行列式简化成两个较为简单的。使问题简化以利计算。例1 计算行列式 解:=例2 计算n(n2)阶行列式解 将按第一列拆成两个行列式的和,即再将上式等号右端的第一个行列式第i列(,3,n)减去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都市锦江区招聘员额教师26人备考考试题库附答案解析
- 2025黑龙江省校园引才活动绥化市人才引进389人备考考试题库附答案解析
- 2026中铁电气化局二公司校园招聘备考考试题库附答案解析
- 工厂安全培训照片素材库课件
- 2025广西工商职业技术学院招聘广西重点领域急需紧缺高层次人才12人备考考试题库附答案解析
- 2026中船航海科技有限责任公司校园招聘备考考试题库附答案解析
- 元素世界探秘
- 娱乐业商务礼仪解析
- 文化旅游局宣传营销方案
- 阅读的力量与智慧
- 无人机飞行操作规范手册
- 【里斯】年轻一代新能源汽车消费洞察与预测 -新物种 新理念 新趋势(2024-2025)
- 医院收费室培训课件
- 信仰思政课件
- 重点小学小学语文毕业总复习小升初资料大全
- 产品测试管理办法
- 高原健康培训课件
- 2025年综合基础知识题库(含答案)
- 血站差错管理课件
- GB/T 18266.2-2025体育场所等级的划分第2部分:健身房
- 矿山技术管理课件
评论
0/150
提交评论