




已阅读5页,还剩231页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章立体几何第一节空间几何体的结构特征及三视图和直观图第二节空间几何体的表面积和体积第三节空间点 直线 平面间的位置关系第四节直线 平面平行的判定及性质第五节直线 平面垂直的判定与性质 目录 第七章立体几何 知识能否忆起 一 多面体的结构特征 互相平行 平行且相等 公共 顶点 底面 截面 底面 多边形 二 旋转体的形成 三 简单组合体简单组合体的构成有两种基本形式 一种是由简单几何体拼接而成 一种是由简单几何体截去或挖去一部分而成 有多面体与多面体 多面体与旋转体 旋转体与旋转体的组合体 任一边 一条直角边 垂直于底边的腰 直径 四 平行投影与直观图空间几何体的直观图常用画法来画 其规则是 1 原图形中x轴 y轴 z轴两两垂直 直观图中 x 轴 y 轴的夹角为45 或135 z 轴与x 轴和y 轴所在平面 2 原图形中平行于坐标轴的线段 直观图中仍 平行于x轴和z轴的线段在直观图中保持原长度 平行于y轴的线段长度在直观图中 斜二测 垂直 平行于坐 标轴 不变 变为原来的一半 五 三视图 动漫演示更形象 见配套课件 几何体的三视图包括 分别是从几何体的 观察几何体画出的轮廓线 正视图 侧视图 俯视图 正前方 正左方 正上方 超链接 小题能否全取 1 教材习题改编 以下关于几何体的三视图的论述中 正确的是 a 球的三视图总是三个全等的圆b 正方体的三视图总是三个全等的正方形c 水平放置的正四面体的三视图都是正三角形d 水平放置的圆台的俯视图是一个圆解析 b中正方体的放置方向不明 不正确 c中三视图不全是正三角形 d中俯视图是一个圆环 答案 a 2 2012 杭州模拟 用任意一个平面截一个几何体 各个截面都是圆面 则这个几何体一定是 a 圆柱b 圆锥c 球体d 圆柱 圆锥 球体的组合体解析 当用过高线的平面截圆柱和圆锥时 截面分别为矩形和三角形 只有球满足任意截面都是圆面 答案 c 3 下列三种叙述 其中正确的有 用一个平面去截棱锥 棱锥底面和截面之间的部分是棱台 两个底面平行且相似 其余各面都是梯形的多面体是棱台 有两个面互相平行 其余四个面都是等腰梯形的六面体是棱台 a 0个b 1个c 2个d 3个 答案 a 解析 中的平面不一定平行于底面 故 错 可用下图反例检验 故 不正确 4 教材习题改编 利用斜二测画法得到的 正方形的直观图一定是菱形 菱形的直观图一定是菱形 三角形的直观图一定是三角形 以上结论正确的是 解析 中其直观图是一般的平行四边形 菱形的直观图不一定是菱形 正确 答案 5 一个长方体去掉一个小长方体 所得几何体的正视图与侧视图分别如图所示 则该几何体的俯视图为 解析 由三视图中的正 侧视图得到几何体的直观图如图所示 所以该几何体的俯视图为 答案 1 正棱柱与正棱锥 1 底面是正多边形的直棱柱 叫正棱柱 注意正棱柱中 正 字包含两层含义 侧棱垂直于底面 底面是正多边形 2 底面是正多边形 顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥 注意正棱锥中 正 字包含两层含义 顶点在底面上的射影必需是底面正多边形的中心 底面是正多边形 特别地 各棱均相等的正三棱锥叫正四面体 2 对三视图的认识及三视图画法 1 空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影 并不是从三个方向看到的该几何体的侧面表示的图形 2 在画三视图时 重叠的线只画一条 能看见的轮廓线和棱用实线表示 挡住的线要画成虚线 3 三视图的正视图 侧视图 俯视图分别是从几何体的正前方 正左方 正上方观察几何体用平行投影画出的轮廓线 3 对斜二测画法的认识及直观图的画法 1 在斜二测画法中 要确定关键点及关键线段 平行于x轴的线段平行性不变 长度不变 平行于y轴的线段平行性不变 长度减半 空间几何体的结构特征 例1 2012 哈师大附中月考 下列结论正确的是 a 各个面都是三角形的几何体是三棱锥b 以三角形的一条边所在直线为旋转轴 其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥c 棱锥的侧棱长与底面多边形的边长都相等 则该棱锥可能是六棱锥d 圆锥的顶点与底面圆周上的任意一点的连线都是母线 自主解答 a错误 如图1是由两个相同的三棱锥叠放在一起构成的几何体 它的各个面都是三角形 但它不是三棱锥 b错误 如图2 若 abc不是直角三角形 或 abc是直角三角形但旋转轴不是直角边 所得的几何体都不是圆锥 图1图2 c错误 若该棱锥是六棱锥 由题设知 它是正六棱锥 易证正六棱锥的侧棱长必大于底面边长 这与题设矛盾 答案 d 解决此类题目要准确理解几何体的定义 把握几何体的结构特征 并会通过反例对概念进行辨析 举反例时可利用最熟悉的空间几何体如三棱柱 四棱柱 正方体 三棱锥 三棱台等 也可利用它们的组合体去判断 1 2013 天津质检 如果四棱锥的四条侧棱都相等 就称它为 等腰四棱锥 四条侧棱称为它的腰 以下4个命题中 假命题是 a 等腰四棱锥的腰与底面所成的角都相等b 等腰四棱锥的侧面与底面所成的二面角都相等或互补c 等腰四棱锥的底面四边形必存在外接圆d 等腰四棱锥的各顶点必在同一球面上 解析 如图 等腰四棱锥的侧棱均相等 其侧棱在底面的射影也相等 则其腰与底面所成角相等 即a正确 底面四边形必有一个外接圆 即c正确 在高线上可以找到一个点o 使得该点到四棱锥各个顶点的距离相等 这个点即为外接球的球心 即d正确 但四棱锥的侧面与底面所成角不一定相等或互补 若为正四棱锥则成立 故仅命题b为假命题 答案 b 几何体的三视图 例2 2012 湖南高考 某几何体的正视图和侧视图均如图所示 则该几何体的俯视图不可能是 自主解答 根据几何体的三视图知识求解 由于该几何体的正视图和侧视图相同 且上部分是一个矩形 矩形中间无实线和虚线 因此俯视图不可能是c 答案 c 三视图的长度特征三视图中 正视图和侧视图一样高 正视图和俯视图一样长 侧视图和俯视图一样宽 即 长对正 宽相等 高平齐 注意 画三视图时 要注意虚 实线的区别 2 1 2012 莆田模拟 如图是底面为正方形 一条侧棱垂直于底面的四棱锥的三视图 那么该四棱锥的直观图是下列各图中的 解析 由俯视图排除b c 由主视图 侧视图可排除a 答案 d 2 2012 济南模拟 如图 正三棱柱abc a1b1c1的各棱长均为2 其正视图如图所示 则此三棱柱侧视图的面积为 答案 d 几何体的直观图 例3 已知 abc的直观图a b c 是边长为a的正三角形 求原 abc的面积 自主解答 建立如图所示的坐标系xoy a b c 的顶点c 在y 轴上 a b 边在x轴上 oc为 abc的高 把y 轴绕原点逆时针旋转45 得y轴 用斜二测画法画几何体的直观图时 要注意原图形与直观图中的 三变 三不变 3 如果一个水平放置的图形的斜二测直观图是一个底角为45 腰和上底均为1的等腰梯形 那么原平面图形的面积是 答案 a 典例 2012 陕西高考 将正方体 如图 1 所示 截去两个三棱锥 得到如图 2 所示的几何体 则该几何体的侧视图为 尝试解题 还原正方体后 将d1 d a三点分别向正方体右侧面作垂线 d1a的射影为c1b 且为实线 b1c被遮挡应为虚线 答案 b 1 因没有区分几何体中的可见轮廓线在三视图中为实线 不可见轮廓线为虚线 误选a c 2 因为忽视了b1c被遮挡 误认为无投影 不用画出 误选d 3 对于由几何体画出其三视图时 首先要看清几何体的结构特征 在绘制三视图时 若相邻两几何体的两表面相交 表面的交线是它们的分界线 在三视图中 分界线和可见轮廓线都是用实线画出 被挡住的轮廓线用虚线画出 其次要注意三视图的长 宽 高的要求及排放规则 1 若某几何体的三视图如图所示 则这个几何体的直观图可以是 解析 由正视图与俯视图可以将选项a c排除 根据侧视图 可以将d排除 注意正视图与俯视图中的实线 答案 b 2 将长方体截去一个四棱锥 得到的几何体如下图所示 则该几何体的侧视图为 解析 被截去的四棱锥的三条可见侧棱中有两条为长方体的面对角线 它们在右侧面上的投影与右侧面 长方形 的两条边重合 另一条为体对角线 它在右侧面上的投影与右侧面的对角线重合 对照各图 只有选项d符合 答案 d 教师备选题 给有能力的学生加餐 1 2012 北京朝阳二模 有一个棱长为1的正方体 按任意方向正投影 其投影面积的最大值是 答案 d 2 如图 abc与 acd都是等腰直角三角形 且ad dc 2 ac bc 平面acd 平面abc 如果以平面abc为水平平面 正视图的观察方向与ab垂直 则三棱锥d abc的三视图的面积和为 3 2012 北京海淀 已知正三棱柱abc a b c 的正视图和侧视图如图所示 设 abc a b c 的中心分别是o o 现将此三棱柱绕直线oo 旋转 射线oa旋转所成的角为x弧度 x可以取到任意一个实数 对应的俯视图的面积为s x 则函数s x 的最大值为 最小正周期为 说明 三棱柱绕直线oo 旋转 包括逆时针方向和顺时针方向 逆时针方向旋转时 oa旋转所成的角为正角 顺时针方向旋转时 oa旋转所成的角为负角 知识能否忆起 柱 锥 台和球的侧面积和体积 2 rl rl r1 r2 l sh r2h ch sh 4 r2 小题能否全取 1 教材习题改编 侧面都是直角三角形的正三棱锥 底面边长为a时 该三棱锥的全面积是 答案 a 2 已知正四棱锥的侧棱与底面的边长都为3 则这个四棱锥的外接球的表面积为 a 12 b 36 c 72 d 108 答案 b 3 某几何体的俯视图是如图所示的矩形 正视图是一个底边长为8 高为5的等腰三角形 侧视图是一个底边长为6 高为5的等腰三角形 则该几何体的体积为 a 24b 80c 64d 240 答案 b 4 教材习题改编 表面积为3 的圆锥 它的侧面展开图是一个半圆 则该圆锥的底面直径为 解析 设圆锥的母线为l 圆锥底面半径为r 则 rl r2 3 l 2 r 解得r 1 即直径为2 答案 2 5 某几何体的三视图如图所示 其中正视图是腰长为2的等腰三角形 侧视图是半径为1的半圆 则该几何体的表面积是 1 几何体的侧面积和全面积 几何体侧面积是指 各个 侧面面积之和 而全面积是侧面积与所有底面积之和 对侧面积公式的记忆 最好结合几何体的侧面展开图来进行 2 求体积时应注意的几点 1 求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决 2 与三视图有关的体积问题注意几何体还原的准确性及数据的准确性 3 求组合体的表面积时注意几何体的衔接部分的处理 2012 安徽高考 某几何体的三视图如图所示 该几何体的表面积是 几何体的表面积 自主解答 由几何体的三视图可知 该几何体是底面为直角梯形的直四棱柱 如图所示 答案 92 1 以三视图为载体的几何体的表面积问题 关键是分析三视图确定几何体中各元素之间的位置关系及数量 2 多面体的表面积是各个面的面积之和 组合体的表面积注意衔接部分的处理 3 旋转体的表面积问题注意其侧面展开图的应用 答案 d 几何体的体积 例2 1 2012 广东高考 某几何体的三视图如图所示 它的体积为 a 72 b 48 c 30 d 24 2 2012 山东高考 如图 正方体abcd a1b1c1d1的棱长为1 e为线段b1c上的一点 则三棱锥a ded1的体积为 自主解答 1 由三视图知 该几何体是由圆锥和半球组合而成的 直观图如图所示 圆锥的底面半径为3 高为4 半球的半径为3 本例 1 中几何体的三视图若变为 其体积为 答案 24 1 计算柱 锥 台体的体积 关键是根据条件找出相应的底面面积和高 应注意充分利用多面体的截面和旋转体的轴截面 将空间问题转化为平面问题求解 2 注意求体积的一些特殊方法 分割法 补体法 转化法等 它们是解决一些不规则几何体体积计算常用的方法 应熟练掌握 3 等积变换法 利用三棱锥的任一个面可作为三棱锥的底面 求体积时 可选择容易计算的方式来计算 利用 等积法 可求 点到面的距离 2 1 2012 长春调研 四棱锥p abcd的底面abcd为正方形 且pd垂直于底面abcd n为pb中点 则三棱锥p anc与四棱锥p abcd的体积比为 a 1 2b 1 3c 1 4d 1 8 答案 c 2 2012 浙江模拟 如图 是某几何体的三视图 则这个几何体的体积是 答案 b 与球有关的几何体的表面积与体积问题 例3 2012 新课标全国卷 已知三棱锥s abc的所有顶点都在球o的球面上 abc是边长为1的正三角形 sc为球o的直径 且sc 2 则此棱锥的体积为 答案 a 1 解决与球有关的 切 接 问题 一般要过球心及多面体中的特殊点或过线作截面 把空间问题转化为平面问题 从而寻找几何体各元素之间的关系 2 记住几个常用的结论 1 正方体的棱长为a 球的半径为r 正方体的内切球 则2r a 3 正四面体的外接球与内切球的半径之比为1 3 3 1 2012 琼州模拟 一个几何体的三视图如图所示 其中正视图是一个正三角形 则这个几何体的外接球的表面积为 某些空间几何体是某一个几何体的一部分 在解题时 把这个几何体通过 补形 补成完整的几何体或置于一个更熟悉的几何体中 巧妙地破解空间几何体的体积问题 这是一种重要的解题策略 补形法 常见的补形法有对称补形 联系补形与还原补形 对于还原补形 主要涉及台体中 还台为锥 问题 1 对称补形 典例1 2012 湖北高考 已知某几何体的三视图如图所示 则该几何体的体积为 答案 b 题后悟道 对称 是数学中的一种重要关系 在解决空间几何体中的问题时善于发现对称关系对空间想象能力的提高很有帮助 题后悟道 三条侧棱两两互相垂直 或一侧棱垂直于底面 底面为正方形或长方形 则此几何体可补形为正方体或长方体 使所解决的问题更直观易求 教师备选题 给有能力的学生加餐 1 两球o1和o2在棱长为1的正方体abcd a1b1c1d1的内部 且互相外切 若球o1与过点a的正方体的三个面相切 球o2与过点c1的正方体的三个面相切 则球o1和o2的表面积之和的最小值为 答案 a 2 已知某球半径为r 则该球内接长方体的表面积的最大值是 a 8r2b 6r2c 4r2d 2r2 答案 a 3 右图是一个几何体的三视图 侧视图中的弧线是半圆 则该几何体的表面积是 a 20 3 b 24 3 c 20 4 d 24 4 答案 a 答案 d 5 2012 上海高考 如图 ad与bc是四面体abcd中互相垂直的棱 bc 2 若ad 2c 且ab bd ac cd 2a 其中a c为常数 则四面体abcd的体积的最大值是 知识能否忆起 一 平面的基本性质 l z l 且p l 二 空间直线的位置关系1 位置关系的分类 相交 一个 平行 没有 没有 没有 2 平行公理平行于同一条直线的两条直线互相 平行 3 等角定理空间中如果两个角的两边分别对应平行 那么这两个角 4 异面直线所成的角 或夹角 1 定义 设a b是两条异面直线 经过空间中任一点o作直线a a b b 把a 与b 所成的叫做异面直线a与b所成的角 2 范围 相等或互补 锐角 或直角 超链接 动漫演示更形象 见配套课件 三 直线与平面的位置关系 l 无数个 l a 一个 l 0个 四 平面与平面的位置关系 0个 无数 小题能否全取 1 教材习题改编 已知a b是异面直线 直线c平行于直线a 那么c与b a 异面b 相交c 不可能平行d 不可能相交 解析 由已知直线c与b可能为异面直线也可能为相交直线 但不可能为平行直线 若b c 则a b 与a b是异面直线相矛盾 答案 c 2 2013 东北三校联考 下列命题正确的个数为 经过三点确定一个平面 梯形可以确定一个平面 两两相交的三条直线最多可以确定三个平面 如果两个平面有三个公共点 则这两个平面重合 a 0b 1c 2d 3解析 错误 正确 答案 c 3 已知空间中有三条线段ab bc和cd 且 abc bcd 那么直线ab与cd的位置关系是 a ab cdb ab与cd异面c ab与cd相交d ab cd或ab与cd异面或ab与cd相交解析 若三条线段共面 如果ab bc cd构成等腰三角形 则直线ab与cd相交 否则直线ab与cd平行 若不共面 则直线ab与cd是异面直线 答案 d 4 教材习题改编 如图所示 在正方体abcd a1b1c1d1中 e f分别是ab ad的中点 则异面直线b1c与ef所成的角的大小为 解析 连接b1d1 d1c 则b1d1 ef 故 d1b1c为所求 又b1d1 b1c d1c d1b1c 60 答案 60 5 教材习题改编 平行六面体abcd a1b1c1d1中既与ab共面又与cc1共面的棱的条数为 解析 如图 与ab和cc1都相交的棱有bc 与ab相交且与cc1平行的棱有aa1 bb1 与ab平行且与cc1相交的棱有cd c1d1 故符合条件的棱共有5条 答案 5 1 三个公理的作用 1 公理1的作用 检验平面 判断直线在平面内 由直线在平面内判断直线上的点在平面内 2 公理2的作用 确定平面的依据 它提供了把空间问题转化为平面问题的条件 3 公理3的作用 判定两平面相交 作两相交平面的交线 证明多点共线 2 异面直线的有关问题 1 判定方法 反证法 利用结论即过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线 如图 2 所成的角的求法 平移法 平面的基本性质及应用 例1 2012 湘潭模拟 如图所示 在正方体abcd a1b1c1d1中 e为ab的中点 f为a1a的中点 求证 ce d1f da三线共点 本例条件不变试证明e c d1 f四点共面 1 证明线共点问题常用的方法是 先证其中两条直线交于一点 再证交点在第三条直线上 2 证明点或线共面问题一般有以下两种途径 首先由所给条件中的部分线 或点 确定一个平面 然后再证其余线 或点 均在这个平面内 将所有条件分为两部分 然后分别确定平面 再证平面重合 1 1 2013 江西模拟 在空间中 下列命题正确的是 a 对边相等的四边形一定是平面图形b 四边相等的四边形一定是平面图形c 有一组对边平行的四边形一定是平面图形d 有一组对角相等的四边形一定是平面图形 2 对于四面体abcd 下列命题正确的是 写出所有正确命题的编号 相对棱ab与cd所在直线异面 由顶点a作四面体的高 其垂足是 bcd三条高线的交点 若分别作 abc和 abd的边ab上的高 则这两条高所在的直线异面 分别作三组相对棱中点的连线 所得的三条线段相交于一点 解析 1 由 两平行直线确定一个平面 知c正确 2 由四面体的概念可知 ab与cd所在的直线为异面直线 故 正确 由顶点a作四面体的高 只有当四面体abcd的对棱互相垂直时 其垂足是 bcd的三条高线的交点 故 错误 当da db ca cb时 这两条高线共面 故 错误 设ab bc cd da的中点依次为e f m n 易证四边形efmn为平行四边形 所以em与fn相交于一点 易证另一组对棱也过它们的交点 故 正确 答案 1 c 2 异面直线的判定 例2 2012 金华模拟 在图中 g n m h分别是正三棱柱的顶点或所在棱的中点 则表示直线gh mn是异面直线的图形有 填上所有正确答案的序号 自主解答 图 中 直线gh mn 图 中 g h n三点共面 但m 面ghn 因此直线gh与mn异面 图 中 连接mg gm hn 因此gh与mn共面 图 中 g m n共面 但h 面gmn 因此gh与mn异面 所以图 中gh与mn异面 答案 1 异面直线的判定常用的是反证法 先假设两条直线不是异面直线 即两条直线平行或相交 由假设的条件出发 经过严格的推理 导出矛盾 从而否定假设肯定两条直线异面 此法在异面直线的判定中经常用到 2 客观题中 也可用下述结论 过平面外一点和平面内一点的直线 与平面内不过该点的直线是异面直线 2 已知m n l为不同的直线 为不同的平面 有下面四个命题 m n为异面直线 过空间任一点p 一定能作一条直线l与m n都相交 m n为异面直线 过空间任一点p 一定存在一个与直线m n都平行的平面 l m n m n与l都斜交 则m与n一定不垂直 m n是 内两相交直线 则 与 相交的充要条件是m n至少有一条与 相交 则四个结论中正确的个数为 a 1b 2c 3d 4 解析 错误 因为过直线m存在一个与直线n平行的平面 当点p在这个平面内且不在直线m上时 就不满足结论 错误 因为过直线m存在一个与直线n平行的平面 当点p在这个平面内时 就不满足结论 正确 否则 若m n 在直线m上取一点作直线a l 由 得a n 从而有n 则n l 正确 答案 b 例3 2012 大纲全国卷 已知正方体abcd a1b1c1d1中 e f分别为bb1 cc1的中点 那么异面直线ae与d1f所成角的余弦值为 异面直线所成角 求异面直线所成的角一般用平移法 步骤如下 1 一作 即找或作平行线 作出异面直线所成的角 2 二证 即证明作出的角是异面直线所成的角 3 三求 解三角形 求出所作的角 如果求出的角是锐角或直角 则它就是要求的角 如果求出的角是钝角 则它的补角才是要求的角 答案 b 典例 2012 浙江高考 设l是直线 是两个不同的平面 a 若l l 则 b 若l l 则 c 若 l 则l d 若 l 则l 常规解法 设 a 若直线l a 且l l 则l l 因此 不一定平行于 故a错误 由于l 故在 内存在直线l l 又因为l 所以l 故 所以b正确 若 在 内作交线的垂线l 则l 此时l在平面 内 因此c错误 已知 若 a l a 且l不在平面 内 则l 且l 因此d错误 答案 b 1 构造法实质上是结合题意构造适合题意的直观模型 然后将问题利用模型直观地作出判断 这样减少了抽象性 避免了因考虑不全面而导致解题错误 2 对于线面 面面平行 垂直的位置关系的判定 可构造长方体或正方体化抽象为直观去判断 巧思妙解 借助于长方体模型解决本题 对于a 如图 与 可相交 对于b 如图 不论 在何位置 都有 对于c 如图 l可与 平行或l 内 对于d 如图 l 或l 或l 2012 大连二模 平面 外有两条直线m和n 如果m和n在平面 内的射影分别是直线m1和直线n1 给出下列四个命题 m1 n1 m n m n m1 n1 m1与n1相交 m与n相交或重合 m1与n1平行 m与n平行或重合 其中不正确的命题个数是 a 1b 2c 3d 4 解析 如图 在正方体abcd a1b1c1d1中ad1 ab1 b1c在底面上的射影分别是a1d1 a1b1 b1c1 a1d1 a1b1 但ad1不垂直ab1 故 不正确 又ad1 b1c 但a1d1 b1c1 故 也不正确 若m1与n1相交 则m与n还可以异面 不正确 若m1与n1平行 m与n可以平行 也可以异面 不正确 答案 d 教师备选题 给有能力的学生加餐 1 2012 襄阳模拟 关于直线a b l以及平面m n 下面命题中正确的是 a 若a m b m 则a bb 若a m b a 则b mc 若a m a n 则m nd 若a m b m 且l a l b 则l m 解析 同平行于一个平面的两条直线可平行也可相交或异面 故a错 a m b a时 b与m的位置关系不确定 b错 当a b时 l a l b l不一定垂直于m 故d错误 答案 c 2 2012 蚌埠模拟 如图在四面体oabc中 oa ob oc两两垂直 且ob oc 3 oa 4 给出如下判断 存在点d o点除外 使得四面体dabc有三个面是直角三角形 存在点d 使得点o在四面体dabc外接球的球面上 存在唯一的点d使得od 平面abc 存在的点d 使得四面体dabc是正棱锥 存在无数个点d 使得ad与bc垂直且相等 其中正确命题的序号是 把你认为正确命题的序号填上 解析 作oh 平面abc于h并延长至d 使oh hd 则四面体dabc与四面体oabc全等 故 正确 在以o a b c确定的球上 显然存在点d满足条件 故 正确 过o做平面abc的垂线 在垂线上取四面体oabc右上方外的点d 显然od 平面abc 故 不正确 abc不是正三角形 以 abc为底面没有正棱锥 取bc的中点o1 在平面aoo1内取d 使bc bd cd 3且ad 5 则四面体是以 bcd为底的正棱锥 这样的d点存在 所以 正确 bc垂直于 所作的平面aoo1 在平面aoo1内以a为圆心 以bc为半径作圆 圆周上任一点满足条件 所以这样的d点有无数个 故 正确 答案 3 2012 西安模拟 在三棱锥p abc中 pa 底面abc ac bc pa ac bc 则直线pc与ab所成角的大小是 答案 60 知识能否忆起 一 直线与平面平行1 判定定理 平面内 a b b a 2 性质定理 平行 a a b 二 平面与平面平行1 判定定理 相交直线 a b a b p a b 相交 交线 a b 2 性质定理 1 教材习题改编 下列条件中 能作为两平面平行的充分条件的是 a 一个平面内的一条直线平行于另一个平面b 一个平面内的两条直线平行于另一个平面c 一个平面内有无数条直线平行于另一个平面d 一个平面内任何一条直线都平行于另一个平面解析 由面面平行的定义可知 一平面内所有的直线都平行于另一个平面时 两平面才能平行 故d正确 小题能否全取 答案 d 2 已知直线a b 平面 则以下三个命题 若a b b 则a 若a b a 则b 若a b 则a b 其中真命题的个数是 a 0b 1c 2d 3解析 对于命题 若a b b 则应有a 或a 所以 不正确 对于命题 若a b a 则应有b 或b 因此 也不正确 对于命题 若a b 则应有a b或a与b相交或a与b异面 因此 也不正确 答案 a 3 教材习题改编 若一直线上有相异三个点a b c到平面 的距离相等 那么直线l与平面 的位置关系是 a l b l c l与 相交且不垂直d l 或l 解析 由于l上有三个相异点到平面 的距离相等 则l与 可以平行 l 时也成立 答案 d 4 平面 平面 a b 则直线a b的位置关系是 解析 由 可知 a b的位置关系是平行或异面 答案 平行或异面 5 2013 衡阳质检 在正方体abcd a1b1c1d1中 e是dd1的中点 则bd1与平面ace的位置关系为 解析 如图 连接ac bd交于o点 连结oe 因为oe bd1 而oe 平面ace bd1 平面ace 所以bd1 平面ace 答案 平行 1 平行问题的转化关系 2 在解决线面 面面平行的判定时 一般遵循从 低维 到 高维 的转化 即从 线线平行 到 线面平行 再到 面面平行 而在性质定理的应用中 其顺序恰好相反 但也要注意 转化的方向总是由题目的具体条件而定 决不可过于 模式化 3 辅助线 面 是求证平行问题的关键 注意平面几何中位线 平行四边形及相似中有关平行性质的应用 线面平行 面面平行的基本问题 例1 2011 福建高考 如图 正方体abcd a1b1c1d1中 ab 2 点e为ad的中点 点f在cd上 若ef 平面ab1c 则线段ef的长度等于 本例条件变为 e是ad中点 f g h n分别是aa1 a1d1 dd1与d1c1的中点 若m在四边形efgh及其内部运动 则m满足什么条件时 有mn 平面a1c1ca 解决有关线面平行 面面平行的基本问题要注意 1 判定定理与性质定理中易忽视的条件 如线面平行的判定定理中条件线在面外易忽视 2 结合题意构造或绘制图形 结合图形作出判断 3 举反例否定结论或用反证法推断命题是否正确 1 1 2012 浙江高三调研 已知直线l 平面 p 那么过点p且平行于直线l的直线 a 只有一条 不在平面 内b 有无数条 不一定在平面 内c 只有一条 且在平面 内d 有无数条 一定在平面 内 解析 由直线l与点p可确定一个平面 且平面 有公共点 因此它们有一条公共直线 设该公共直线为m 因为l 所以l m 故过点p且平行于直线l的直线只有一条 且在平面 内 答案 c 2 2012 潍坊模拟 已知m n l1 l2表示直线 表示平面 若m n l1 l2 l1 l2 m 则 的一个充分条件是 a m 且l1 b m 且n c m 且n l2d m l1且n l2解析 由定理 如果一个平面内有两条相交直线分别与另一个平面平行 那么这两个平面平行 可得 由选项d可推知 答案 d 直线与平面平行的判定与性质 例2 2012 辽宁高考 如图 直三棱柱abc a b c bac 90 ab ac aa 1 点m n分别为a b和b c 的中点 1 证明 mn 平面a acc 自主解答 1 证明 法一 连接ab ac 因为点m n分别是a b和b c 的中点 所以点m为ab 的中点 又因为点n为b c 的中点 所以mn ac 又mn 平面a acc ac 平面a acc 因此mn 平面a acc 法二 取a b 的中点p 连接mp 而点m n分别为ab 与b c 的中点 所以mp aa pn a c 所以mp 平面a acc pn 平面a acc 又mp pn p 因此平面mpn 平面a acc 而mn 平面mpn 因此mn 平面a acc 利用判定定理证明线面平行的关键是找平面内与已知直线平行的直线 可先直观判断平面内是否已有 若没有 则需作出该直线 常考虑三角形的中位线 平行四边形的对边或过已知直线作一平面找其交线 2 2012 淄博模拟 如图 在棱长为2的正方体abcd a1b1c1d1中 e f分别是bd bb1的中点 1 求证 ef 平面a1b1cd 2 求证 ef ad1 2 abcd a1b1c1d1是正方体 ad1 a1d ad1 a1b1 又a1d a1b1 a1 ad1 平面a1b1d ad1 b1d 又由 1 知 ef b1d ef ad1 平面与平面平行的判定与性质 例3 如图 已知abcd a1b1c1d1是棱长为3的正方体 点e在aa1上 点f在cc1上 g在bb1上 且ae fc1 b1g 1 h是b1c1的中点 1 求证 e b f d1四点共面 2 求证 平面a1gh 平面bed1f 常用的判断面面平行的方法 1 利用面面平行的判定定理 2 面面平行的传递性 3 利用线面垂直的性质 l l 3 2012 北京东城二模 如图 矩形amnd所在的平面与直角梯形mbcn所在的平面互相垂直 mb nc mn mb 1 求证 平面amb 平面dnc 2 若mc cb 求证 bc ac 证明 1 因为mb nc mb 平面dnc nc 平面dnc 所以mb 平面dnc 又因为四边形amnd为矩形 所以ma dn 又ma 平面dnc dn 平面dnc 所以ma 平面dnc 又ma mb m 且ma mb 平面amb 所以平面amb 平面dnc 2 因为四边形amnd是矩形 所以am mn 因为平面amnd 平面mbcn 且平面amnd 平面mbcn mn 所以am 平面mbcn 因为bc 平面mbcn 所以am bc 因为mc bc mc am m 所以bc 平面amc 因为ac 平面amc 所以bc ac 立体几何中的探索性问题主要是对平行 垂直关系的探究 对条件和结论不完备的开放性问题的探究 解决这类问题一般根据探索性问题的设问 假设其存在并探索出结论 然后在这个假设下进行推理论证 若得到合乎情理的结论就肯定假设 若得到矛盾就否定假设 典例 如图 在四面体pabc中 pc ab pa bc 点d e f g分别是棱ap ac bc pb的中点 1 求证 de 平面bcp 2 求证 四边形defg为矩形 3 是否存在点q 到四面体pabc六条棱的中点的距离相等 说明理由 解 1 证明 因为d e分别为ap ac的中点 所以de pc 又因为de 平面bcp 所以de 平面bcp 2 证明 因为d e f g分别为ap ac bc pb的中点 所以de pc fg dg ab ef 所以四边形defg为平行四边形 又因为pc ab 所以de dg 所以四边形defg为矩形 题后悟道 此类问题一般是先探求点的位置 多为线段的中点或某个三等分点 一般点的情形很少 然后给出符合要求的证明 注意书写格式要规范 一般有两种格式 第一种书写格式 探求出点的位置 证明 符合要求 写出明确答案 第二种书写格式 从结论出发 要使什么成立 只需使什么成立 寻求使结论成立的充分条件 类似于分析法 证明 存在 证明如下 取棱pc的中点f 线段pe的中点m 连接bd 设bd ac o 连接bf mf bm oe pe ed 2 1 f为pc的中点 m是pe的中点 e是md的中点 mf ec bm oe mf 平面aec ce 平面aec bm 平面aec oe 平面aec mf 平面aec bm 平面aec mf bm m 平面bmf 平面aec 又bf 平面bmf bf 平面aec 教师备选题 给有能力的学生加餐 1 已知m n l为三条不同的直线 为两个不同的平面 则下列命题中正确的是 a m n m nb l l c m m n n d l l 解析 对于选项a m n平行或异面 对于选项b 可能出现l 这种情形 对于选项c 可能出现n 这种情形 答案 d 2 如图 三棱柱abc a1b1c1 底面为正三角形 侧棱a1a 底面abc 点e f分别是棱cc1 bb1上的点 点m是线段ac上的动点 ec 2fb 当点m在何位置时 bm 平面aef 解 法一 如图 取ae的中点o 连接of 过点o作om ac于点m 侧棱a1a 底面abc 侧面a1acc1 底面abc om 底面abc 3 2012 蚌埠二中质检 如图1所示 在rt abc中 ac 6 bc 3 abc 90 cd为 acb的角平分线 点e在线段ac上 ce 4 如图2所示 将 bcd沿cd折起 使得平面bcd 平面acd 连接ab 设点f是ab的中点 1 求证 de 平面bcd 2 若ef 平面bdg 其中g为直线ac与平面bdg的交点 求三棱锥b deg的体积 知识能否忆起 一 直线与平面垂直 1 直线和平面垂直的定义直线l与平面 内的直线都垂直 就说直线l与平面 互相垂直 任意一条 2 直线与平面垂直的判定定理及推论 两条相交直线 垂直 a b a b o l a l b a b a 3 直线与平面垂直的性质定理 平行 a b 垂线 l l 二 平面与平面垂直1 平面与平面垂直的判定定理 2 平面与平面垂直的性质定理 l a l a 交线 小题能否全取 1 教材习题改编 已知平面 直线l 若 l 则 a 垂直于平面 的平面一定平行于平面 b 垂直于直线l的直线一定垂直于平面 c 垂直于平面 的平面一定平行于直线ld 垂直于直线l的平面一定与平面 都垂直解析 对于a中可与 平行或相交 不正确 对于b中 可与 垂直或斜交 不正确 对于c中 可与直线l平行或相交 不正确 答案 d 2 2012 厦门模拟 如图 o为正方体abcd a1b1c1d1的底面abcd的中心 则下列直线中与b1o垂直的是 a a1db aa1c a1d1d a1c1 解析 易知ac 平面bb1d1d a1c1 ac a1c1 平面bb1d1d 又b1o 平面bb1d1d a1c1 b1o 答案 d 3 已知 是两个不同的平面 m n是两条不重合的直线 则下列命题中正确的是 a 若m n 则m nb 若m m n 则n c 若m n 则m nd 若 n m n 则m 解析 对于选项a 若m n 则m n 或m n是异面直线 所以a错误 对于选项b n可能在平面 内 所以b错误 对于选项d m与 的位置关系还可以是m m 或m与 斜交 所以d错误 由面面垂直的性质可知c正确 答案 c 4 如图 已知pa 平面abc bc ac 则图中直角三角形的个数为 解析 由线面垂直知 图中直角三角形为4个 答案 4 5 教材习题改编 如图 已知六棱锥p abcdef的底面是正六边形 pa 平面abc pa 2ab 则下列命题正确的有 pa ad 平面abc 平面pbc 直线bc 平面pae 直线pd与平面abc所成角为30 解析 由pa 平面abc pa ad 故 正确 中两平面不垂直 中ad与平面pae相交 bc ad 故不正确 中pd与平面abc所成角为45 答案 1 在证明线面垂直 面面垂直时 一定要注意判定定理成立的条件 同时抓住线线 线面 面面垂直的转化关系 即 2 在证明两平面垂直时 一般先从现有的直线中寻找平面的垂线 若这样的直线图中不存在 则可通过作辅助线来解决 如有平面垂直时 一般要用性质定理 3 几个常用的结论 1 过空间任一点有且只有一条直线与已知平面垂直 2 过空间任一点有且只有一个平面与已知直线垂直 垂直关系的基本问题 例1 2013 襄州模拟 若m n为两条不重合的直线 为两个不重合的平面 给出下列命题 若m n都平行于平面 则m n一定不是相交直线 若m n都垂直于平面 则m n一定是平行直线 已知 互相垂直 m n互相垂直 若m 则n m n在平面 内的射影互相垂直 则m n互相垂直 其中的假命题的序号是 自主解答 显然错误 因为平面 平面 平面 内的所有直线都平行 所以 内的两条相交直线可同时平行于 正确 如图1所示 若 l 且n l 当m 时 m n 但n 所以 错误 如图2显然当m n 时 m不垂直于n 所以 错误 答案 解决此类问题常用的方法有 依据定理条件才能得出结论的 可结合符合题意的图形作出判断 否定命题时只需举一个反例 寻找恰当的特殊模型 如构造长方体 进行筛选 1 2012 长春模拟 设a b是两条不同的直线 是两个不同的平面 则下列四个命题 若a b a b 则b 若a a 则 若a 则a 或a 若a b a b 则 其中正确命题的个数为 a 1b 2c 3d 4 解析 对于 由b不在平面 内知 直线b或者平行于平面 或者与平面 相交 若直线b与平面 相交 则直线b与直线a不可能垂直 这与已知 a b 相矛盾 因此 正确 对于 由a 知 在平面 内必存在直线a1 a 又a 所以有a1 所以 正确 对于 若直线a与平面 相交于点a 过点a作平面 的交线的垂线m 则m 又 则有a m 这与 直线a m有公共点a 相矛盾 因此 正确 对于 过空间一点o分别向平面 引垂线a1 b1 则有a a1 b b1 又a b 所以a1 b1 所以 因此 正确 综上所述 其中正确命题的个数为4 答案 d 直线与平面垂直的判定与性质 1 证明 ph 平面abcd 3 证明 ef 平面pab 自主解答 1 证明 因为ab 平面pad ph 平面pad 所以ph ab 因为ph为 pad中ad边上的高 所以ph ad 因为ph 平面abcd ab ad a ab ad 平面abcd 所以ph 平面abcd 证明直线和平面垂直的常用方法有 1 利用判定定理 2 利用判定定理的推论 a b a b 3 利用面面平行的性质 a a 4 利用面面垂直的性质 当两个平面垂直时 在一个平面内垂直于交线的直线垂直于另一个平面 2 2012 启东模拟 如图所示 已知pa 矩形abcd所在平面 m n分别是ab pc的中点 1 求证 mn cd 2 若 pda 45 求证 mn 平面pcd 2 连接pm mc pda 45 pa ad ap ad 四边形abcd为矩形 ad bc ap bc 又 m为ab的中点 am bm 而 pam cbm 90 pam cbm pm cm 又n为pc的中点 mn pc 由 1 知 mn cd pc cd c mn 平面pcd 面面垂直的判定与性质 例3 2012 江苏高考 如图 在直三棱柱abc a1b1c1中 a1b1 a1c1 d e分别是棱bc cc1上的点 点d不同于点c 且ad de f为b1c1的中点 求证 1 平面ade 平面bcc1b1 2 直线a1f 平面ade 自主解答 1 因为abc a1b1c1是直三棱柱 所以cc1 平面abc 又ad 平面abc 所以cc1 ad 又因为ad de cc1 de 平面bcc1b1 cc1 de e 所以ad 平面bcc1b1 又ad 平面ade 所以平面ade 平面bcc1b1 2 因为a1b1 a1c1 f为b1c1的中点 所以a1f b1c1 因为cc1 平面a1b1c1 且a1f 平面a1b1c1 所以cc1 a1f 又因为cc1 b1c1 平面bcc1b1 cc1 b1c1 c1 所以a1f 平面bcc1b1 由 1 知ad 平面bcc1b1 所以a1f ad 又ad 平面ade a1f 平面ade 所以a1f 平面ade 1 判定面面垂直的方法 1 面面垂直的定义 2 面面垂直的判定定理 a a 2 在已知平面垂直时 一般要用性质定理进行转化 转化为线面垂直或线线垂直 转化方法 在一个平面内作交线的垂线 转化为线面垂直 然后进一步转化为线线垂直 3 2012 泸州一模 如图 在四棱锥p abcd中 底面abcd为菱形 bad 60 q为ad的中点 1 若pa pd 求证 平面pqb 平面pad 2 若点m在线段pc上 且pm tpc t 0 试确定实数t的值 使得pa 平面mqb 解 1 因为pa pd q为ad的中点 所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南京市六合区2024-2025学年八年级下学期期末练习英语试卷(含答案无听力原文及音频)
- 汉字形体的演变过程
- 2025年江苏省宿迁市中考数学试卷(无答案)
- 3D打印技术基础知到智慧树答案
- 新能源科技发展影响国际市场
- 金融金融银行保险证券市场前景展望预测
- Ubuntu Linux 22.04系统管理与服务器配置 课件 项目5-9 配置常规网络与使用远程服务-配置与管理Web服务器
- 2025年出版物发行零售项目立项申请报告
- 水闸安全知识培训内容课件
- 隐蔽工程检查与验收方案
- 2025-2030中国ARM核心板行业市场现状分析及竞争格局与投资发展研究报告
- 脐灸技术操作流程图及考核标准
- 给药错误PDCA课件
- 医美注射培训
- 白内障护理课件
- 香菇多糖生产工艺创新-洞察分析
- 箱泵一体化泵站设计图集
- 三上10《公共场所文明言行》道德法治教学设计
- 《电器火灾的防范》课件
- 路灯CJJ检验批范表
- 农村厕所改造合同书完整版
评论
0/150
提交评论