高考数学第1轮总复习 11.2离散型随机变量的期望与方差(第1课时)课件 理(广西专版).ppt_第1页
高考数学第1轮总复习 11.2离散型随机变量的期望与方差(第1课时)课件 理(广西专版).ppt_第2页
高考数学第1轮总复习 11.2离散型随机变量的期望与方差(第1课时)课件 理(广西专版).ppt_第3页
高考数学第1轮总复习 11.2离散型随机变量的期望与方差(第1课时)课件 理(广西专版).ppt_第4页
高考数学第1轮总复习 11.2离散型随机变量的期望与方差(第1课时)课件 理(广西专版).ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十一章概率与统计 离散型随机变量的期望与方差 第讲 2 第一课时 1 若离散型随机变量 的概率分布为则称e 为数学期望或平均数 均值 数学期望又简称期望 x1p1 x2p2 xnpn 2 如果离散型随机变量 所有可能取的值是x1 x2 xn 且取这些值的概率分别为p1 p2 pn 则称d 叫做随机变量 的方差 d 的算术平方根d 叫做随机变量 的 记作 x1 e 2 p1 x2 e 2 p2 xn e 2 pn 标准差 3 期望与方差的基本性质 1 e a b d a b 2 若 b n p 则e d ae b a2d np np 1 p 1 设投掷1颗骰子的点数为 则 a e 3 5 d 3 52b e 3 5 d c e 3 5 d 3 5d e 3 5 d b 解 可以取1 2 3 4 5 6 p 1 p 2 p 3 p 4 p 5 p 6 16 所以d 1 3 5 2 2 3 5 2 3 3 5 2 4 3 5 2 5 3 5 2 6 3 5 2 2 设导弹发射的事故率为0 01 若发射10次 其出事故的次数为 则下列结论正确的是 a e 0 1b d 0 1c p k 0 01k 0 9910 kd p k 解 b n p e 10 0 01 0 1 p k a 3 有两台自动包装机甲与乙 包装重量分别为随机变量 1 2 已知e 1 e 2 d 1 d 2 则自动包装机的质量较好 解 e 1 e 2说明甲 乙两机包装的重量的平均水平一样 d 1 d 2说明甲机包装重量的差别大 不稳定 所以乙机质量好 乙 题型1利用基本公式求数学期望 1 1 某城市有甲 乙 丙3个旅游景点 一位客人游览这3个景点的概率分别是0 4 0 5 0 6 且客人是否游览哪个景点互不影响 设 表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值 求 的分布列及数学期望 2 把4个球随机地投入4个盒子中去 设 表示空盒子的个数 求e 分析 第 2 小题中每个球投入到每个盒子的可能性是相等的 所以总的投球方法数为44 空盒子的个数可能为0个 此时投球方法数为 所以 空盒子的个数为1时 此时投球方法数为所以 同样可分析得出p 2 p 3 解 1 分别记 客人游览甲景点 客人游览乙景点 客人游览丙景点 为事件a b c 由已知a b c相互独立 且p a 0 4 p b 0 5 p c 0 6 据题意 的可能取值为1 3 其中p 3 p a b c p 2 0 4 0 5 0 6 0 24 p 1 1 0 24 0 76 所以e 1 0 76 3 0 24 1 48 2 的所有可能的取值为0 1 2 3 所以 的分布列为所以点评 数学期望是离散型随机变量的一个特征数 它反映了离散型随机变量取值的平均水平 计算数学期望可以在求得分布列后 直接按公式计算即可 某商场举行抽奖促销活动 抽奖规则是 从装有9个白球 1个红球的箱子中每次随机地摸出一个球 记下颜色后放回 摸出一个红球可获得奖金10元 摸出两个红球可获得奖金50元 现有甲 乙两位顾客 规定 甲摸一次 乙摸两次 令x表示甲 乙两人摸球后获得的奖金总额 求 1 x的分布列 2 x的数学期望 解 1 x的所有可能取值为0 10 20 50 60 故x的分布列为 2 题型2求二项分布的数学期望 2 为拉动经济增长 某市决定新建一批重点工程 分别为基础设施工程 民生工程和产业建设工程三类 这三类工程所含项目的个数分别占总数的 现在3名工人独立地从中任选一个项目参与建设 记 为3人中选择的项目属于基础设施工程或产业建设工程的人数 求 的分布列及数学期望 解 记第i名工人选择的项目属于基础设施工程 民生工程和产业建设工程分别为事件ai bi ci i 1 2 3 由题意知a1 a2 a3相互独立 b1 b2 b3相互独立 c1 c2 c3相互独立 ai bj ck i j k 1 2 3 且i j k互不相同 相互独立 且p ai p bi p ci 解法1 设3名工人中选择的项目属于民生工程的人数为 由已知 b 3 且 3 所以 故 的分布列为 的数学期望 解法2 第i名工人选择的项目属于基础设施工程或产业建设工程分别为事件di i 1 2 3 由已知 d1 d2 d3相互独立 且p di p ai ci p ai p ci 所以 b 3 即 故 的分布列为 的数学期望 点评 若随机变量服从二项式分布时 可由二项分布的期望计算公式 若 b n p 则e np 更简便的求得期望 题型3利用分解与合成原理求数学期望 3 甲 乙两个代表队进行乒乓球对抗赛 每队三名队员 甲队队员是a1 a2 a3 乙队队员是b1 b2 b3 根据以往多次比赛的统计 对阵队员之间胜负概率如下 a1胜b1的概率为 a2胜b2的概率为 a3胜b3的概率为 按上述对阵方式出场 每场比赛胜队得1分 负队得0分 设甲 乙两队最后所得总分分别为 求e e 解法1 根据题意 的可能取值为3 2 1 0 且 3 所以 因为 3 所以解法2 设甲队队员ai i 1 2 3 每场的得分为 i 则 1 2 3 因为 1的可能取值为1 0 且 所以同理所以 点评 如果两个随机变量 满足一定的关系式 a b 则e a b ae b 利用这个公式可方便快捷地求相关随机变量的期望 某先生居住在城镇的a处 准备开车到单位b处上班 若该地各路段发生堵车事件都是独立的 且在同一路段发生堵车事件最多只有一次 发生堵车事件的概率如图 例如 a c d算作两个路段 其中路段ac cd发生堵车事件的概率分别为 若记路线a c f b中遇到堵车次数为随机变量 求 的数学期望e 解 设 1 2 3分别为路段ac cf fb中遇到堵车的次数 则其可能取值都为1 0 且 1 2 3 因为所以 1 对离散型随机变量的期望应注意 1 期望是算术平均值概念的推广 是概率意义下的平均 2 e 是一个实数 由 的分布列唯一确定 即作为随机变量 是可变的 可取不同值 而e 是不变的 它描述e 取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论