![[理学]理论力学第一章冯维明主编.ppt_第1页](http://file.renrendoc.com/FileRoot1/2019-1/2/744fc20d-495b-4a31-9d95-79b02f7fe7cd/744fc20d-495b-4a31-9d95-79b02f7fe7cd1.gif)
![[理学]理论力学第一章冯维明主编.ppt_第2页](http://file.renrendoc.com/FileRoot1/2019-1/2/744fc20d-495b-4a31-9d95-79b02f7fe7cd/744fc20d-495b-4a31-9d95-79b02f7fe7cd2.gif)
![[理学]理论力学第一章冯维明主编.ppt_第3页](http://file.renrendoc.com/FileRoot1/2019-1/2/744fc20d-495b-4a31-9d95-79b02f7fe7cd/744fc20d-495b-4a31-9d95-79b02f7fe7cd3.gif)
![[理学]理论力学第一章冯维明主编.ppt_第4页](http://file.renrendoc.com/FileRoot1/2019-1/2/744fc20d-495b-4a31-9d95-79b02f7fe7cd/744fc20d-495b-4a31-9d95-79b02f7fe7cd4.gif)
![[理学]理论力学第一章冯维明主编.ppt_第5页](http://file.renrendoc.com/FileRoot1/2019-1/2/744fc20d-495b-4a31-9d95-79b02f7fe7cd/744fc20d-495b-4a31-9d95-79b02f7fe7cd5.gif)
已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一篇运动学 第一篇运动学 制作与设计山东大学工程力学系 TheoreticalMechanics TheoreticalMechanics 第一篇运动学 一 运动学的研究任务1 研究物体的机械运动及运动的几何性质 2 研究机构传动规律 二 学习运动学的目的1 学习动力学的基础 受力分析和运动分析是学习动力学的两大基础 2 学习机械原理和设计传动机构的基础 3 解决工程问题 引言 TheoreticalMechanics 三 研究方法不考虑引起运动的原因 只研究运动的几何性质 四 研究对象将实际物体抽象化为两种力学模型 几何学意义上的点 或动点 和不考虑质量的刚体 点 无质量 无大小 在空间占有其位置的几何点 刚体 物体内任意两点之间的距离始终保持不变 第一篇运动学 引言 TheoreticalMechanics 第一章点的运动学 1 1点的运动的矢量表示法 1 2点的运动的直角坐标表示法 1 3点的运动的自然表示法 TheoreticalMechanics 第一章点的运动学 1 1矢量表示法 TheoreticalMechanics 运动方程 运动方程用点在任意瞬时t的位置矢量r t 表示 r t 简称为位矢 r r t 表示动点M在空间运动时 矢径r的末端将描绘出一条连续曲线 称为矢径端图 它就是动点运动的轨迹 1 1点的运动的矢量表示法 O TheoreticalMechanics 速度 t瞬时 矢径r t 点在t瞬时的速度 r t r t t r t t时间间隔内矢径的改变量 t t瞬时 矢径r t t 或r 动点的速度等于它的矢径对时间的一阶导数 1 1点的运动的矢量表示法 TheoreticalMechanics 速度 描述点在t瞬时运动快慢和运动方向的力学量 速度的方向沿着运动轨迹的切线 指向与点的运动方向一致 速度大小等于矢量的模 1 1点的运动的矢量表示法 TheoreticalMechanics 加速度 点在t瞬时的加速度 t t瞬时 速度v t t 或v t瞬时 速度v t 1 1点的运动的矢量表示法 TheoreticalMechanics 加速度 描述点在t瞬时速度大小和方向变化率的力学量 加速度的方向为 v的极限方向 指向与轨迹曲线的凹向一致 加速度大小等于矢量a的模 点的加速度为矢量 1 1点的运动的矢量表示法 TheoreticalMechanics 第一章点的运动学 1 2直角坐标表示法 TheoreticalMechanics 1 2点的运动的直角坐标表示法 运动方程 不受约束的点在空间有三个自由度 在直角坐标系中 点在空间的位置由三个方程确定 x f1 t y f2 t z f3 t r xi yj zk 矢径r与x y z的关系 TheoreticalMechanics 速度 矢径 结论 点的速度矢量在直角坐标轴上的投影等于点的相应坐标对时间的一阶导数 1 2点的运动的直角坐标表示法 TheoreticalMechanics 已知速度的投影求速度 方向由方向余弦确定 大小 1 2点的运动的直角坐标表示法 TheoreticalMechanics 加速度 点的加速度矢量在直角坐标轴上的投影等于点的相应坐标对时间的二阶导数 1 2点的运动的直角坐标表示法 TheoreticalMechanics 加速度 点的加速度矢量在直角坐标轴上的投影等于点的相应坐标对时间的二阶导数 加速度大小 方向余弦 1 2点的运动的直角坐标表示法 TheoreticalMechanics 第一章点的运动学 1 3自然表示法 TheoreticalMechanics 1 3点的运动的自然表示法 运动方程 若点沿着已知的轨迹运动 则点的运动方程 可用点在已知轨迹上所走过的弧长随时间变化的规律描述 弧坐标特点 1 在轨迹上任选一参考点作为坐标原点 2 有正 负方向 一般以点的运动方向作为正向 反之为负 即弧坐标是一代数量 3 坐标系为自然轴系 s f t TheoreticalMechanics 密切面与自然轴系 密切面 当P 点无限接近于P点时 过这两点的切线所组成的平面 称为P点的密切面 1 3点的运动的自然表示法 TheoreticalMechanics M点的密切面 1 3点的运动的自然表示法 TheoreticalMechanics 由密切面得到的几点结论 1 3点的运动的自然表示法 1 空间曲线上的任意点都存在密切面 而且是惟一的 2 空间曲线上的任意点无穷小邻域内的一段弧长 可以看作是位于密切面内的平面曲线 3 对于平面曲线而言 密切面就是该曲线所在的平面 4 曲线在密切面内的弯曲程度 称为曲线的曲率 用1 表示 5 曲线在垂直于密切面的平面内的曲率 称为第二曲率 TheoreticalMechanics 自然轴系 M为空间曲线上的动点 b为过动点P垂直于切线和主法线的直线 其正向由确定 自然轴系M nb 为过动点P的密切面内的切线 其正向指向弧坐标正向 n为密切面内垂直于切线的直线 其正向指向曲率中心 过M点作垂直于 的平面 称为曲线在M点的法面 1 3点的运动的自然表示法 TheoreticalMechanics 自然轴系 自然轴系M nb 1 3点的运动的自然表示法 TheoreticalMechanics 自然轴系的特点 跟随动点在轨迹上作空间曲线运动 自然轴系的基矢量 n b 自然轴系的单位矢量 n b是方向在不断变化的单位矢量 固定的直角坐标系的单位矢量i j k 则是常矢量 1 3点的运动的自然表示法 TheoreticalMechanics 弧坐标中的速度表示 点的速度在切线轴上的投影等于弧坐标对时间的一阶导数 1 3点的运动的自然表示法 TheoreticalMechanics 跟随动点在轨迹上作空间曲线运动 自然轴系的特点 1 3点的运动的自然表示法 式中 TheoreticalMechanics 有关两点讨论 1 3点的运动的自然表示法 和分别表示速度的大小与方向 TheoreticalMechanics 根据加速度的定义以及弧坐标中速度的表达式 弧坐标中的加速度表示 1 3点的运动的自然表示法 TheoreticalMechanics 1 3点的运动的自然表示法 当时 和以及同处于M点的密切面内 这时 的极限方向垂直于 亦即n方向 TheoreticalMechanics 加速度表示为自然轴系投影形式 1 3点的运动的自然表示法 TheoreticalMechanics 几点讨论 1 3点的运动的自然表示法 TheoreticalMechanics 几点讨论 点的加速度的大小和方向 1 3点的运动的自然表示法 例在图的摇杆滑道机构中 滑块M同时在固定圆弧槽BC和摇杆OA的滑道中滑动 圆弧BC的半径为R 摇杆的转轴O在BC弧的圆周上 摇杆绕O轴以匀角速度转动 当运动开始时 摇杆在水平位置 求 1 滑块相对于BC弧的速度 加速度 2 滑块相对于摇杆的速度 加速度 TheoreticalMechanics 第一章点的运动学 例题 TheoreticalMechanics 先求滑块M相对圆弧BC的速度 加速度 解法1 BC弧固定 故滑块M的运动轨迹已知 宜用自然法求解 以M点的起始位置为原点 逆时针方向为正 方向如图 方向如图 第一章点的运动学 例题 TheoreticalMechanics 解法2 直角坐标法 建立图示坐标系 第一章点的运动学 例题 TheoreticalMechanics 在轨迹已知情况下 用自然法不仅简便 而且速度 加速度的几何意义很明确 讨论 第一章点的运动学 例题 TheoreticalMechanics 求滑块M相对于摇杆的速度与加速度 将参考系Ox 固定在OA杆上 此时 滑块M在OA杆上作直线运动 相对轨迹是已知的OA直线 M点相对运动方程为 方向沿OA且与x 正向相反 其方向沿指向x 轴负向 第一章点的运动学 例题 TheoreticalMechanics 第一章点的运动学 例题 例一炮弹以初速和仰角射出 如图所示的直角坐标系的运动方程为 求时炮弹的切向加速度和法向加速度 以及这时轨迹的曲率半径 解 炮弹的运动方程以直角坐标给出 因此它的速度和加速度在x y轴上的投影分别为 TheoreticalMechanics 第一章点的运动学 例题 当t 0时 炮弹的速度和全加速度的大小分别为 若将加速度在切线和法线方向分解 则有 TheoreticalMechanics 第一章点的运动学 例题 式中 当t 0时 由上式得 由 求得时轨迹的曲率半径为 则 TheoreticalMechanics 第一章点的运动学 例题 解 取点M与直线轨道的接触点O为原点 建立如图所示的直角坐标系Oxy 当轮子转过角时 轮子与直角轨道的接触点为C 由于是纯滚动 有 TheoreticalMechanics 第一章点的运动学 例题 M点的直角坐标运动方程为 a M点的速度沿坐标轴的投影为 b M点的速度为 c 运动方程式 a 是一个摆线 这表明M点的运动轨迹是摆线 如图所示 TheoreticalMechanics 第一章点的运动学 例题 取M的起始点O作为弧坐标原点 将式 c 的速度v积分 即得用弧坐标表示的运动方程为 加速度在直角坐标系上的投影为 d 全加速度为 TheoreticalMechanics 第一章点的运动学 例题 将式 c 对时间t求导 得点M的切线加速度为 法线加速度为 e 由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年华安街道智慧停车服务合同
- 2025辽宁沈阳市政府国资委市属国有企业外部董事人才库拟入库人员模拟试卷及答案详解1套
- 2025昆仑数智科技有限责任公司春季高校毕业生招聘15人考前自测高频考点模拟试题及完整答案详解
- 2025福建泉州市部分公办学校专项招聘编制内新任教师46人(四)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年上半年合肥滨湖投资控股集团有限公司招聘14人模拟试卷及一套答案详解
- 2025湖南岳阳市平江县事业单位第一批公开选调工作人员模拟试卷及参考答案详解
- 天津医疗考试题库及答案
- 兽医考试线上考试题库及答案
- 检验科标准考试题库及答案
- 江苏无人机地面站考试题库及答案
- (2025)中国石油化工集团中石化招聘笔试试题及答案
- 以桂为墨:高中桂花文化校本课程的开发与实践探索
- 2025年计算机二级JAVA考试中的真题练习试题及答案
- 游戏俱乐部投资合同协议书
- 数字政府效能评估体系-洞察阐释
- 三级老年人能力评估师试题(附答案)
- 2025年电力机车钳工(高级)职业技能鉴定理论考试题库(含答案)
- 国家开放大学《政府经济学》形考任务1-4答案
- 委托品牌代工合同协议
- 智联招聘银行试题及答案
- 珠宝购销合同书范本珠宝购销合同书5篇
评论
0/150
提交评论