八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用导学案 (新版)华东师大版.doc_第1页
八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用导学案 (新版)华东师大版.doc_第2页
八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用导学案 (新版)华东师大版.doc_第3页
八年级数学上册 第14章 勾股定理 14.2 勾股定理的应用导学案 (新版)华东师大版.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

14.2 勾股定理的应用【学习目标】1.准确运用勾股定理及逆定理2.经历探究勾股定理的应用过程,掌握定理的应用方法,应用“数形结合”的思想来解决。3.培养合情推理能力,提高合作交流意识,体会勾股定理的应用价值。【学习重难点】1、掌握勾股定理及逆定理2、正确运用勾股定理及逆定理【学习过程】一、课前准备1、已知RtABC中,C=90,若BC=4,AC=2,则AB=_;若AB=4,BC=则AC=_2、一个直角三角形的模具,量得其中两边的长分别为5cm、3cm,则第三边的长是_3要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑建6m问至少需要多长的梯子?二、学习新知自主学习:1如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程(精确到0.01cm)(1)自制一个圆柱,尝试从A点到C点沿圆柱侧面画出几条路线,你认为哪条路线最短呢?(2)如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路程是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到C点上的食物,它沿圆柱侧面爬行的最短路程是多少?学习体会:我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程实例分析:例1、一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如左图的某工厂,问这辆卡车能否通过该工厂的厂门?例2、如图,在55的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:从点A出发一条线段AB使它的另一端点B在格点(即小正方形的顶点)上,且长度为画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数例3:已知CD=m, AD=m,ADC=90, BC=24m,AB=26m。求图中阴影部分的面积【随堂练习】1如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B240m,已知他在水中游了510m,求该河宽度2在一棵树10m高的B处,有两只猴子,一只爬下树走到离树20m处的池塘A处;另外一只爬到树顶D处后直接跃到A外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?3如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A0 B1 C2 D34如图,已知ABC中,AB=10,BC=9,AC=17,求BC边上的高【中考连线】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当他把绳子的下端拉开5m后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论