




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.一个班有50名学生,他们的名字都是由2个或3个字组成的。将他们平均分为两组之后,两组的学生名字字数之差为10。此时两组学生中名字字数为2的学生数量之差为( )A.5 B.8 C.10 D.122.早上7点两组农民开始在麦田里收割麦子,其中甲组20人,乙组15人。8点半,甲组分出10人捆麦子;10点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,什么时候乙组所有已割的麦子能够捆好?(假设每个农民的工作效率相同)( )A.10:45 B.11:00 C.11:15 D.11:303.小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?( )A.1.5 B.2 C.2.5 D.3 4.830箱货物运往外地,大卡车每辆每次可装货物20箱,运费为140元。小卡车每辆每次可装货物15箱,运费为120元。请问这批货的运费最少需要多少元?A.6000 B.5840 C.5860 D.59005.A、B两桶中共装有108公斤水。从A桶中取出1/4的水倒入B桶,再从B桶中取出1/4的水倒入A桶,此时两桶中水的重量刚好相等。问B桶中原来有多少公斤水?( )A.42 B.48 C.50 D.601、一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为()A.3400元B.3060元C.2845元D.2720元2、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,而汽车的速度是他速度的5倍,则此人追上小偷需要()A.20秒B.50秒C.95秒D. 110秒3、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?()A.12点10分B.12点15分C.l2点20分D.12点30分4、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每减1元,我就多订购4件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润。则这种商品每件的成本是()。A.75元B.80元C.85元D.90元5、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱;如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了几角几分?()A.27角6分B.26角4分C.25角5分D.26角6分1、一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为()A.3400元B.3060元C.2845元D.2720元2、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,而汽车的速度是他速度的5倍,则此人追上小偷需要()A.20秒B.50秒C.95秒D. 110秒3、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?()A.12点10分B.12点15分C.l2点20分D.12点30分4、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每减1元,我就多订购4件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润。则这种商品每件的成本是()。A.75元B.80元C.85元D.90元 5、某地区水电站规定,如果每月用电不超过24度,则每度收9分钱;如果超过24度,则多出度数按每度2角收费,若某月甲比乙多交了9.6角,则甲交了几角几分?()A.27角6分B.26角4分C.25角5分D.26角6分1、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒各位上的数的顺序,则所成的新数比原数的3倍少39。求这个三位数。( )A.196B.348C.267D.4292、某车工计划15天里加工420个零件,最初3天中每天加工24个,以后每天至少要加工多少个才能在规定的时间内超额完成任务?( )A.31B.29C.30D.283、某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?( )A.500B.600C.400D.4504、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?( )A.1750B.l400C.1120D.10505、男女并排散步,女的3步才能跟上男的2步。两人从都用右脚起步开始到两人都用左脚踏出为止,女的应走出多少步?( )A.6步B.8步C.12步D.多少步都不可能1、一堆苹果,每组5个,余3个,每组7个,剩余2个,则这堆苹果的个数最少为()A.31B.10C.23D.l2、四个连续自然数的积为3024,它们的和为()A.26B.52C.30D.283、一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,停车场有红色夏利轿车多少辆?()A.14B.21C.15D.224、某种型号拖拉机,前轮直径为50厘米,后轮直径为150厘米,拖拉机前进时,前轮转了240圈,求后轮转了多少圈?()A.60B.40C.30D.805、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?()A.900B.180C.270D.5001、一堆苹果,每组5个,余3个,每组7个,剩余2个,则这堆苹果的个数最少为()A.31B.10C.23D.l2、四个连续自然数的积为3024,它们的和为()A.26B.52C.30D.283、一个停车场有50辆汽车,其中红色轿车35辆,夏利轿车28辆,有8辆既不是红色轿车又不是夏利轿车,停车场有红色夏利轿车多少辆?()A.14B.21C.15D.224、某种型号拖拉机,前轮直径为50厘米,后轮直径为150厘米,拖拉机前进时,前轮转了240圈,求后轮转了多少圈?()A.60B.40C.30D.805、某天晚上一警局18%的女警官值班。如果那天晚上有180个警官值班,其中一半是女警官,问该警局有多少女警官?()A.900B.180C.270D.500【例1】有101 位乒乓球运动员在进行冠军争夺赛。通过比赛,将从中产生一名冠军。这次比赛实行捉对淘汰制。在一轮比赛全部结束后,失败者失去继续比赛的资格,而胜利者再次抽签,参加下一轮的比赛。问一共要进行多少场比赛才能最终产生冠军?A.32 B.63C.100 D.101【例2】甲、乙、丙、丁与小强5 位同学一起比赛象棋,每两人都要比赛一盘。到现在为止,甲已经赛了4 盘,乙赛了3 盘,丙赛了2盘,丁赛了1 盘。问小强已经赛了几盘?A.1 B.2C.3 D.4【例3】某足球赛决赛,共有24 个队参加,它们先分成六个小组进行循环赛,决出16 强,这16 个队按照确定的程序进行淘汰赛,最后决出冠、亚军和第三、四名。总共需要安排多少场比赛?A.48 B.51C.52 D.54【例4】学校举办一次中国象棋比赛,有10名同学参加,比赛采用单循环赛制,每名同学都要与其他9 名同学比赛一局。比赛规则,每局棋胜者得2 分,负者得0 分,平局两人各得1 分,比赛结束后,10名同学的得分各不相同,已知:(1)比赛第一名与第二名都是一局都没有输过;(2)前两名的得分总和比第三名多20分;(3)第四名的得分与最后四名的得分和相等。那么,排名第五名的同学的得分是? A.8分 B.9 分C.10分 D.11分【例5】4 支足球队进行单循环比赛,即每两队之间都比赛一场。每场比赛胜者得3分,负者得0 分,平局各得1 分。比赛结果,各队的总得分恰好是4 个连续的自然数。问:输给第一名的队的总分是多少?A.4 B.5C.6 D.71. 牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?( )A. 5 B. 6 C. 7 D. 82. 12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草。假设每公顷原有草量相等,草的生长速度不变。问多少头牛8周吃完16公顷的牧草?( )A. 16 B. 20 C. 24 D. 25 3. 一个水池安装有排水量相等的排水管若干根,一根入水管不断地往池里防水,平均每分钟入水量相等,如果同时开放3根排水管,45分钟可以把池中水排完;同时,开放5根排水管25分钟把池中水排完,那么,同时开放8根排水管,几分钟排完池中的水?( )A. 12 B. 14 C. 15 D. 184. 有三辆不同车速的汽车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。这三辆车分别用3分钟,5分钟,8分钟分别追上骑车人。已知快速车每小时54千米,中车速每小时39.6千米,那么慢车的车速是多少(假设骑车人的速度不变)?A. 31 B.31.5 C. 32 D. 32.55. 自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走得慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级。结果男孩用50秒到达楼上,女孩用60秒到达楼上。该扶梯共有多少级?( )A. 100 B.120 C. 150 D. 180【例题1】一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?( )A.14% B.17%C.16% D.15%【例题2】从装满100克浓度为80%的盐水杯中倒出40克盐水倒人清水将杯倒满,这样反复三次后,杯中盐水的浓度是: A.17.28% B.28.8%C.11.52 D.48%【例题3】、从装满100克浓度为80%的盐水杯中倒出40克盐水,再倒入清水将杯倒满,这样反复三次后,杯中盐水的浓度是( )。(2006年山西省公务员考试行测试卷第8题)A.17.28%B.28.8%C.11.52%D.48%【例题4】、一瓶浓度为80%酒精溶液 倒出1/3后再加满水 在倒出1/4后仍用水加满,再倒出1/5后 还用水加满,这时瓶溶液的酒精浓度是多少( )。(2010年江苏省公务员考试行测试卷第35题)A.32%B.50%C.30%D.35%【例题5】、有一瓶水,将它倒出1/3,然后倒入同样多的酒精,再将此溶液倒出1/4后又倒进同样多的酒精,第三次倒出此溶液的1/5后又倒进同样多的酒精,问此时的酒精浓度是多少?( )(2008年云南公务员考试行测试卷第15题)A.70%B.65%C.60%D.55%【例1】学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?A.256人 B.250人 C.225人 D.196人 (2002年A类真题)【例2】某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每排增加3人,结果缺少29人,仪仗队总人数是多少?( )【2007年河南省公务员考试行政职业能力测验真题-44题;2007年四川省法检系统公务员考试行政职业能力测验真题-13题】A. 600 B. 500 C. 450 D. 400【例3】某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?( )【2002年公务员考试行政职业能力测验真题(A)-9题;2002年公务员考试行政职业能力测验真题(B)-18题】A. 256人 B. 250人 C. 225人 D. 196人【例4】学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?( ) A. 256 人 B. 250 人 C. 225 人 D. 196 人【例5】小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一 个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币 的总价值是( )A. 1元 B. 2元 C. 3元 D. 4元1、四位数5122除以一个两位数得到的余数是66,求这个两位数。( )A. 80 B. 79 C. 64 D. 672、自然数P满足下列条件:P除以10的余数为9,P除以9的余数为8,P除以8的余数为7。如果:100P1000,则这样的P有几个? ( )2005年浙江真题A。不存在 B.1个 C.2个 D.3个3、学生在操场上列队做操,只知人数在90110之间。如果排成3排则不多不少;排成5排则少2人;排成7排则少4人;则学生人数是多少人?( )2009年江西真题A. 102 B. 98 C. 104 D. 1084、两个整数相除,商是5,余数是11,被除数、除数、商及余数的和是99,求被除数是多少?()A.12B.41 C.67D.71 5、有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。那么,这四个自然数的和是?A. 216B. 108C. 314D. 3481. 3,16,45,96,( ),2882008年江西公务员考试行政职业能力测验真题-26A. 105 B. 145 C. 175 D. 1952. 1,6,20,56,144,( ) 2010年国家公务员考试行政职业能力测验真题-41A. 256 B. 244 C. 352 D. 3843. 0,0,6,24,60,120,( ) 2010年十一省市区公务员考试行政职业能力测验真题-1A.180B.196C.210D.2164. 1,8,28,80,( )2008年福建春季公务员考试行政职业能力测验真题-96A.128B.148C.180D.2085. 0,4,16,48,128,( ) 2010年十一省市区公务员考试行政职业能力测验真题-4A.280B.320C.350D.4206. 1,6,27,108,( )A.205B.305C.350D.4051.某通讯公司对3542个上网客户的上网方式进行调查,其中1258 个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352 个客户,那么三种上网方式都使用的客户有多少个?A.148 B.248C.350 D.5002. 36名女生结伴购物,21人买了长裙,24人买了短裙,24人买了超短裙;14人买了长裙和短裙,15人买了短裙和超短裙,13人买了长裙和超短裙;只有一位羞涩的小姑娘一条裙子都没买。请问,共有几名女生购买了三种裙子?A.1 B.5 C.8 D.93.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?A.22 B.21 C.24 D.234.如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?A.15 B.16C.14 D.185.三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )。 A.A等和B等共6幅 B.B等和C等共7幅C.A等最多有5幅 D.A等比C等少5幅6.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2 B.3 C.7 D.无法确定7.从1,2,3,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?A.23 B.24 C.25 D.268.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?A.3 B.4 C.6 D.59.某学校1999名学生去游故宫、景山和北海三地,规定每人至少去一处,至多去两地游览,那么至少有多少人游的地方相同?A.35 B.186 C.247 D.33410.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2 B.3 C.7 D.无法确定1、47/83 83 47/8383= aA、1 B、83 C、2209 D、68892、用一个尽量小的自然数乘以1999,使其乘积的尾数出现六个连续的9,求这个乘积。 A、5999999 B、4999999 C、3999999 D、29999993、有一筐苹果,甲、乙、丙三人分,甲先拿了一半,乙拿了剩余的一半,丙再拿剩下的1/3,筐里还剩 14个苹果,问:这一筐苹果有多少个? A、56 B、64 C、84 D、904、某仪仗队排成方阵,第一次排列若干人,结果多余 100 人;第二次比第一次每排增加 3 人,结果缺少29 人,仪仗队总人数是多少? BA、600 B、500 C、450 D、4005、有 a、b、c 三个数,已知ab=24,ac=36,bc=54,求a+b+c= A、23 B 、21 C、19 D、176、圆形的周长扩大至原来的2倍,它的面积比原来增大: bA、1 倍 B、2倍 C、3 倍 D、4 倍7、某企业的固定资产,甲车间是乙车间的1/2,乙车间是丙车间的1/4,那么,丙车间是甲车间的: aA、8 倍 B、1/8 C、1/2 D、2倍8、某外语班的30名学生中,有8人学习英语,12 人学习日语,3人既学英语也学日语,问有多少人既不学英语又没学日语? A、12 B、13 C、14 D、159、甲乙丙三人买书共花费96 元钱,已知丙比甲多花16 元,乙比甲多花8元,则甲乙丙三人花的钱比是: dA、3:5:4 B、4:5:6 C、2:3:4 D、3:4:5例1:已知甲、乙两人共有260本书,其中甲的书有13是专业书,乙的书有12.5是专业书,问甲有多少本非专业书( )2009年国家公务员考试真题-109A.67 B.75 C.87 D.174例2:小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4。小强答对了27 道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有( )A.3道 B.4道 C.5道 D.6 道例3:某剧场共有100个座位,如果当票价为10元时,票能售完,当票价超过10元时,每升高2元,就会少卖出5张票。那么当总的售票收入为1360元时,票价为多少( )A.12元 B.14元 C.16元 D.18元例4:某单位有工作人员48人,其中女性占总人数的37.5,后来又调来女性若干人,这时女性人数恰好是总人数的40,问调来几名女性?2010年黑龙江公务员考试真题-55A1人 B2人 C3人 D4人例5:一商品的进价比上月低了5,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为( )2010年国家公务员考试真题-51A.12 B.13 C.14 D.15例1 、100人参加7项活动,已知每人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )A. 22 B. 21 C. 24 D. 23例2、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。A.7 B.8 C.9 D.10 例3、假设五个相异正整数的平均数是15,中位数是18,则此五个正整数中的最大数的最大值可能为( )。 A.24 B.32 C.35 D.40例4、共有100人参加招聘考试,考试内容有5道,15题分别有80人、92人、86人、78人和74人答对,答对3道以上的人通过考试,问至少多少人通过考试?( )A. 30 B. 55 C. 70 D. 74例5、从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同。A.21 B.22 C.23 D.24例6、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要( )。A.7天 B.8天 C.9天 D.10天例7、有面值为8分、1角和2角的三种纪念邮票若干张,总价值为1元2角2分,则邮票至少有( )。A.7张 B.8张 C.9张 D.10张例8、有红、黄、蓝、白珠子各10粒,装在一只袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出几粒?( )A. 3 B. 4 C. 5 D. 61A、B两站之间有一条铁路,甲、乙两列火车分别停在A站和B站,甲火车分钟走的路程等于乙火车5分钟走的路程。乙火车上午8时整从B站开往A站。开出一段时间后,甲火车从A站出发开往B站,上午9时整两列火车相遇,相遇地点离A、B两站的距离比是1516。那么,甲火车在( )从A站出发开往站。A8时12分 B8时15分 C8时24分 D8时30分2.A、B 两码头间河流长为 220 千米,甲、乙两船分别从 A、B 码头同时起航。如果相向而行5小时相遇,如果同向而行 55小时甲船追上乙船。则乙船在静水中每小时行驶多少千米?A.19 B.20 C.28 D.303.一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?4.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)? A1千米 B1.2千米 C1.5千米 D1.8千米5一篇文章,现有甲、乙、丙三人,如果由甲乙两人合作翻译,需要10小时完成;如果由乙丙两人合作翻译,需要12小时完成;现在先由甲丙两人合作翻译小时,剩下的再由乙单独翻译,需要12小时才能完成。则这篇文章如果全部由乙单独翻译,需要( )小时能够完成。A15 B18 C20 D256.有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:A.16天 B.15天 C.12天 D.10天7.规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做1个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止。如果甲、乙轮流做一个工程需要9.8小时,而乙、甲轮流做同样的工程只需要9.6小时,那乙单独做这个工程需要多少小时?A.6.4 B.7.3 C.8.2 D.9.7 8.某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客在8折的基础上要求再让利150元,如果真是这样,商店的盈亏情况是:A.亏20元 B.赚20元 C.亏30元 D.赚30元9.某公司要到外地去推销产品,产品成本为每件3000元。从公司到外地距离是400千米,运费为每件产品每运1千米收1.5元。如果在运输及销售过程中产品的损耗是10%,那么公司要想实现25%的利润率,零售价应是每件多少元?A.4800 B.5000 C.5600 D.600010.某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少元钱?A550 B600 C650 D7001.某通讯公司对3542个上网客户的上网方式进行调查,其中1258 个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。如果使用不只一种上网方式的有352 个客户,那么三种上网方式都使用的客户有多少个?A.148 B.248C.350 D.5002. 36名女生结伴购物,21人买了长裙,24人买了短裙,24人买了超短裙;14人买了长裙和短裙,15人买了短裙和超短裙,13人买了长裙和超短裙;只有一位羞涩的小姑娘一条裙子都没买。请问,共有几名女生购买了三种裙子?A.1 B.5 C.8 D.93.100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样。那么,参加人数第四多的活动最多有几人参加?A.22 B.21 C.24 D.234.三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )。A.A等和B等共6幅 B.B等和C等共7幅C.A等最多有5幅 D.A等比C等少5幅 5.从1,2,3,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?A.23 B.24 C.25 D.266.10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?A.3 B.4 C.6 D.57.将104张桌子分别放到14个办公室,每个人办公室至少放一张桌子,不管怎样分至少有几个办公室的桌子数是一样多?A.2 B.3 C.7 D.无法确定1.【解析】C。不定方程问题。由题意两组学生名字字数相差10,两边人数相同,即其中一组比另一组三名字人数多10人,则2名字人数少10人。2.【解析】B。工程问题。采用赋值法,赋值每个农民割麦子的效率为1,由题意,甲组割麦子的总量为201.5+101.5=45,故每个农民捆麦子的效率为451.510=3;设从10点之后经过x小时,乙组的麦子全部捆好。故乙组割麦子的总量为15(3+x),捆麦子总量为203x,二者应该相等,解得x=1(小时);故11:00时麦子可以全部捆好(最后一步可以采用代入排除)。 3.【解析】B。行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y,;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法xy=2y(x-y),解得x=2y,故两人速度比为2:1。4.【解析】B。若大小车每次都能装满,则大车运1箱的价格为140207元,小车运一箱的价格为120158元,故应尽量选择大车。先考虑不浪费的情况,即每车次都装潢,则需大车运40次,小车运2次,所需费用4014021205840元,为四个选项中的最小值。5.【解析】D。代入排除思想。由题意,最后两桶水中各有54公斤水。代入D项60。则A桶原有水量为48公斤,481/4=12,12+60=72,721/4=18,72-18=54,满足题意。1【解析】C。八折和九折之间相差一折,即215l25340元,可算出原价为3400元,则进货价34000.92152845元。2【解析】D。设小偷速度为V,则他的速度2V,汽车的速度10V。l0秒内小偷走了10V,但车子走了100V,所以距离是110V,而他和小偷的速度差为V,即追上小偷需要110秒。3【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。4【解析】A。设成本为x元。减价5%即减去了5元,同样就要多购买4520件,利润相同,即可得到等式(100x)80(95x)(8020),得x75。5【解析】A。如果每月用电24度,则应该交249216分钱,即21.6角。答案中没有这个答案,就是说甲已经超过了这个规定数字。设他用了24M度电,则交了249+M2021620M,甲比乙多交了96分,则21620M96可以被9整除,即(20M+120)9。M3时,(20M120)92,即甲用了27度电,用了276分。1【解析】C。八折和九折之间相差一折,即215l25340元,可算出原价为3400元,则进货价34000.92152845元。2【解析】D。设小偷速度为V,则他的速度2V,汽车的速度10V。l0秒内小偷走了10V,但车子走了100V,所以距离是110V,而他和小偷的速度差为V,即追上小偷需要110秒。3【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。4【解析】A。设成本为x元。减价5%即减去了5元,同样就要多购买4520件,利润相同,即可得到等式(100x)80(95x)(8020),得x75。5【解析】A。如果每月用电24度,则应该交249216分钱,即21.6角。答案中没有这个答案,就是说甲已经超过了这个规定数字。设他用了24M度电,则交了249+M2021620M,甲比乙多交了96分,则21620M96可以被9整除,即(20M+120)9。M3时,(20M120)92,即甲用了27度电,用了276分。1【解析】C。代入法。首先排除A和D;根据所成的新数比原数的3倍少39,用每个选项的最后一个数乘以3再减去,所得的数只有C中有。 2【解析】C。由(420243)(153)=29可知,若超额完成任务,应该每天加工30个。3【解析】B。25246004【解析】D。另外5名成员平分余下的收入,每人拿15%,即1050元。5【解析】D。两人的出脚顺序以6步为一个循环。在这6步中,两人没有一次同时出左脚,因此多少步都不可能。1【解析】C。直接代入。2【解析】C。因式分解得,原式33247,可知这几个自然数是6、7、8、9。3【解析】B。红色夏利=总数红色非夏利非红色非夏利非红色夏利,红色非夏利红色红色夏利,非红色夏利夏利红色夏利,设则红色夏利50(35红色夏利)8(28红色夏利),得红色夏利21。 4【解析】D。圆的周长与其直径成正比。5【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18,可知女警官有500人。1【解析】C。直接代入。2【解析】C。因式分解得,原式33247,可知这几个自然数是6、7、8、9。3【解析】B。红色夏利=总数红色非夏利非红色非夏利非红色夏利,红色非夏利红色红色夏利,非红色夏利夏利红色夏利,设则红色夏利50(35红色夏利)8(28红色夏利),得红色夏利21。 4【解析】D。圆的周长与其直径成正比。5【解析】D。180个警官中的一半是女警官,则值班的女警官为90个,而这90个女警官占总数的女警官18,可知女警官有500人。1. C 2.B 3.C 4.D 5.A1.解析:B 本题属于“牛吃草问题”。根据“牛吃草问题”的核心公式:y(Nx)T,设每天新长出x单位的草,牧场原有y单位的草,根据题意可得:y(27x)6;y(23x)9,解得:x15,y72。设这片牧草可以供21头牛吃T天,则72(2715)T,得:T6。故供21头牛吃6天。故选B2. 解析:C 本题属于“牛吃草问题”。现在是三块面积不同的草地。6,12,16的最小公倍数是48。6848,12448,16348。为了解决这个问题,只需将三块草地的面积统一起来。公顷数扩大,所需牛的头数也扩大。所以原题可变为:12896头牛4周吃完48公顷的牧草,20480头牛6周吃完48公顷的牧草。问多少头牛8周吃完48公顷的牧草?根据“牛吃草问题”的核心公式:y(Nx)T,设每周新长出x单位的草,牧场原有y单位的草,根据题意可得:y(96x)4;y(80x)6,解得:x48,y192。设N头牛8周吃完48公顷的牧草。则192(3N48)8,得:3N72,N24。故24头牛8周吃完48公顷的牧草。故选C。3. 解析:C 本题属于牛吃草问题。“进水管每分钟进水”相当于“草”,“ 排水管”相当于“牛”,根据“牛吃草问题”的核心公式:y(Nx)T,设池中原有水y单位,进水管每分钟进水x单位,可得:y(3x)45,y(5x)25,解得:x0.5,y112.5。设同时开放8根排水管,T分钟排完池中的水。则112.5(80.5)T,得:T15。同时开放8根排水管,15分钟排完池中的水。故选C。 4. 解析:B 本题属于“牛吃草问题”。“总的草量”变成了“车与人最初的距离”,“草”变成了“人的速度”,“牛”变成了“车的速度”。根据“牛吃草问题”的核心公式:y(Nx)T,设车与人最初的距离为y,人的速度为x。根据题意可得:y(54x)3;y(39.6x)5,解得:x18,y108。设丙车的速度为N。则108(N18)8,解得:N31.5。故丙车的速度为31.5。故选B。 5. 解析:A 本题属于“牛吃草问题”。“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级速度”,“牛”变成了“人的速度”。根据“女孩每3秒钟走2梯级”,得女孩每秒钟走梯级。根据“牛吃草问题”的核心公式:y(Nx)T,设扶梯的梯级总数为y,梯级速度为x。根据题意可得:y(1x)50;y(2/3x)60,解得:x1,y100。则扶梯的梯级总数为100。故选A。1.解析:通过阅读题目,我们可以看出题目中只给了百分比,并没有告知其他条件,那么我们可以采用赋值的方法进行解题,再根据上述所说蒸发水后,溶质是不变量,所以我们可以求出溶质这个不变量进行计算,由此可得:设第一次蒸发水后的溶液为600,蒸发掉的水为X,那么我们就可知溶质为60,再根据第二次蒸发后所得的比例列出等式,得出的关系式为:2. 解析:通过阅读题目,我们了解到此题属于反复操作的类型题,反复操作的类型题我们可以使用十字交叉的方法,还可以使用公式法,即:最后所得浓度=原浓度*(1-倒出的比例)n.根据题目可知倒出的比例是,根据公式可得最后的浓度为:最后所得浓度=(/5)3= 4/527/125 = 17.28%由此选择A选项。 3. 解析:通过读题目我们可以发现盐水溶液中的溶质和溶剂都在发生变化,且溶质是一直在减少,而溶剂是经历了减少、增加、减少、增加、减少、增加的过程。通过比较溶质和溶剂的变化,我们可以很容易的得出,溶质和溶剂相比,溶质的变化比较简单,因而选择分析溶质最后的量的多少。刚开始溶液的质量为100克,倒出40克盐水后,减少了40%,溶质变为原来的60%,然后倒入清水至原来的100,连续3此后,溶质最终变为原来的 60%60%60%=21.6%,原来溶液的浓度为80%,则最终溶液的浓度为80%21.6%=17.28%,答案选择A。4. 解析:同上题的解析过程相似,我们通过读题可以发现,酒精溶液中,溶质酒精和溶剂水都在发生变化,溶质的变化简单,究竟一直在减少,而溶剂水则经历很复杂的变化,因而我们要分析研究其中酒精的变化。第一次倒出1/3,剩下原来的2/3,第二次倒出1/4,剩下原来原来2/3的3/4,即2/33/4=1/2,第三次倒出1/5,剩下1/2的4 /5,即1/24/5=2/5。所以经历了3次变化后最终酒精溶液中的酒精浓度为80%2/5=32%,答案选择A。总结来看其实最终的浓度为80%(1-1/3)(1-1/4)(1-1/5)=32%。5. 解:通过读题目,我们可以发现,最终瓶子里含有酒精以及水,共经历了3次变化,在这3次变化的过程中,酒精是经历了增加、减少、增加、减少、增加的过程,变化过程复杂,对比来看溶液中的溶剂水,则处于一直在减少的状态。所以,最终瓶子里含有的水的量为: 1(1-1/3)(1-1/4)(1-1/5)=40%,所以最终酒精溶液的浓度为1-40%=60%,选择答案C。1.解析:方阵问题的核心是求最外层每边人数。根据四周人数和每边人数的关系可以知:每边人数=四周人数4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。方阵最外层每边人数:604+1=16(人)整个方阵共有学生人数:1616=256(人)。所以,正确答案为A。2. 答案:B3. 答案:A4. 【解析】答案为A。方阵问题的核心是求最外层每边人数。根据四周人数和每边人数的关系可 知,每边人数=四周人数+ 4 + 1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以 求了。方阵最外层每边人数为60 4 + 1 = 16(人),整个方阵共有学生人数1616 = 256(人)。5. 【解析】答案为C。设当围成一个正方形时,每边有硬币x枚,此时总的硬币枚数为4(x-1),当 变成三角形时,则此时的硬币枚数为3(x+5 -1),由此可列方程4(x-l)=3(x+5-1),解得x=16, 总的硬币枚数为60,则总价值为3元。1.【答案及解析】本题答案选B。此题涉及余数问题的两个基本考点,可以借助排除法和代入法来快速求出结果。根据考点(1),可知这个两位数一定大于66,故答案C排除;根据考点(2)5122665056,这个结果应该是这个两位数的整数倍,将其余3个选项带入,发现只有B符合。故答案选B。2. 【答案及解析】本题答案选C。因为题干中各除数和余数的差均为1,且8、9、10的最小公倍数是360。根据上述结论(3)可知P360n1,因此在100和1000之间P可以取两个值:当n1时,P为359;当n2时,P为719。3. 【答案及解析】本题答案选D。本题属于余数相关问题。由“排成5排则少2人,排成7排则少4人”;相当于“排成5排则多3人,排成7排则多3人”根据上述结论(1),人数可以表示为:35n3,因为9035n3110,解得:n3。学生人数是3533108。4. 【答案及解析】余数是11,因此,根据余数的范围(0余数除数),我们能够确定除数11。除数为整数,所以除数12,根据余数的基本恒等式:被除数=除数商余数12商余数=12511=71,因此被除数最小为71,选D。5. 【答案及解析】利用余数基本恒等式:被除数=除数商余数,有A=B5+5= (B+1)5。由于A、B均是自然数,于是A可以被5整除,同理,A还可以被6、7整除,因此,A可以表示为5、6、7的公倍数,即210n。由于A、B、C、D的和不超过400,所以A只能等于210,从而可以求出B=41、C=34、D=29,得到A+B+C+D=314,选C。1.解析: C 首先观察数列,发现原数列可以提取3,4,5,6,( ),8,提取之后剩余1,4,9,16,( ),36,显然易知所提取的等差数列未知项为7,剩余数列的未知项为25,则原数列未知项为725=175。故选C。2. 解析: C 观察数列,原数列可以提取1,3,5,7,9,( ),提取之后剩余1,2,4,8,16,( ),易知所提取的等差数列未知项为11,剩余数列的未知项为32,则原数列未知项为1132=352。故选C。3. 解析: C 观察数列,原数列可以提取2,4,6,8,10,12,( ),提取之后剩余0,0,1,3,6,10,( ),易知所提取的等差数列未知项为14,剩余数列为二级等差数列,其未知项为15,则原数列未知项为1415=210。故选C。4. 解析: D 观察数列,原数列可以提取1,2,4,8,( ),提取之后剩余1,4,7,10,( ),易知所提取的等比数列未知项为16,剩余等差数列的未知项为13,则原数列未知项为1613=208。故选D。5. 解析: B 观察数列,原数列可以提取1,2,4,8,16,( ),提取之后剩余0,2,4,6,8,( ),易知所提取的等比数列未知项为32,剩余等差数列的未知项为10,则原数列未知项为3210=320。此题亦可先提取等差数列。故选B。6. 解析: D 观察数列,原数列可以提取1,3,9,27,( ),提取之后剩余1,2,3,4,( ),易知所提取的等比数列未知项为8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB1304-T 435-2023 校园智慧消防体系建设规范
- 安全培训烫伤摔伤课件
- 门窗工程防治方案(3篇)
- 安全培训炉长课件
- 景观工程细化方案(3篇)
- 康复科的科室介绍
- 暴力伤医防范课件
- 智能信用评估系统创新创业项目商业计划书
- 采矿作业效率评估工具创新创业项目商业计划书
- 安全培训活动评价课件
- 2025至2030中国土豆行业产业运行态势及投资规划深度研究报告
- 2025年交通安全知识测试题含答案详解
- 露天矿山项目资金预算与成本控制
- 2025年注册安全工程师考试(初级)安全生产法律法规试题及答案
- (正式版)DB15∕T 2590.1-2022 《毛茛科草种质资源描述和数据采集规范 第1部分:金莲花》
- 人教版(2024)八年级上册数学13.2.2 三角形的中线、角平分线、高 教案
- 电机电路安全知识培训课件
- 13.2.1三角形的边 教案 人教版数学八年级上册
- 2025年征兵考试题目及答案
- 依法服兵役课件
- 953空间向量基本定理
评论
0/150
提交评论