力学声响振动研究室 (MSVLAB).ppt_第1页
力学声响振动研究室 (MSVLAB).ppt_第2页
力学声响振动研究室 (MSVLAB).ppt_第3页
力学声响振动研究室 (MSVLAB).ppt_第4页
力学声响振动研究室 (MSVLAB).ppt_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Degeneratescaleanalysisformembraneandplateproblemsusingthemeshlessmethodandboundaryelementmethod 研究生 吳清森指導教授 陳正宗教授陳義麟博士 國立台灣海洋大學河海工程學系結構組碩士班論文口試日期 2004 06 1609 00 10 20 Frameofthethesis Chapter2Green sfunctionandPoissonintegralformula Laplaceproblem Chapte3BIEMandBEMfordegeneratescaleproblem Laplaceandbiharmonicproblem Chapter4Meshlessmethodfordegeneratescaleproblem Laplaceandbiharmonicproblem Literaturereview Engineeringbackground Literaturereview Mathematicalbackground Motivation 1 BIEM BEM 2 MFS TrefftzMethod Methods Techniques DegeneratekernelCirculants Membrane Laplaceequation Plate biharmonicequation Statics Degeneratescaleproblem 1 Dcase Eulerbeam S r x fieldpoint variables sourcepoint fixed Degeneratekernel AlternativederivationsforthePoissonintegralformula a DerivationofthePoissonintegralformula Traditionalmethod Imagesource Null fieldintegralequationinconjunctionwithdegeneratekernels B Boundarydensities Degeneratekernel Unknowncoefficients unknown specified Fundamentalsolution Green sidentity DegeneratescaleforplateanalysisusingtheBIEMandBEM Engineeringproblemgovernedbybiharmonicequation 1 Planeelasticity 2 Slowviscousflow Stokes Flow 3 Solidmechanics Plateproblem Problemstatement flexurerigidity uniformdistributedload domainofinterest Governingequation Boundarycondition Splittingmethod Governingequation Boundarycondition deflectionofthecircularplate Boundaryintegralequationsforplate 2 Slope 3 Normalmoment 4 Effectiveshearforce 1 Displacement Operators Slope Normalmoment Effectiveshearforce Kernelfunctions Fundamentalsolution Kernelfunctions Degeneratekernelsforbiharmonicoperator Mathematicalanalysis Discretemodel Fortheclampedcircularplate uand arespecified formulation Circulant a 1 2 3 4 5 2N 1 2N 2 2N 3 2N Eigenvaluesofthefourmatrices kernel kernel kernel kernel Determinant Degeneratescale a Degeneratescalesfortheclampedcase Degeneratescalesforthesimply supportedcase 6options Degeneratescale formulation formulation Degeneratescalesforthefreecase RelationshipbetweentheLaplaceproblemandbiharmonicproblem a translation b rotation constant NontrivialmodesinFEMandBEM Numberofdegeneratescales Laplaceproblem Laplaceproblem UTformulation LMformulation Nodegeneratescale Numberofdegeneratescales biharmonicproblem formulation formulation formulation Numberofdegeneratescales biharmonicproblem formulation formulation formulation Nodegeneratescaleoccurs Illustrativeexample JFM Mill1977 Weadoptthenull fieldintegralequationinconjunctionwithdegeneratekerneltoderivetheanalyticsolution Exactsolution M 20 M 50 OntheequivalenceoftheTrefftzmethodandMFSforLaplaceandbiharmonicequations TrefftzmethodandMFS isthenumberofcompletefunctions isthenumberofsourcepointsintheMFS StatementforLaplaceproblem Two dimensionalLaplaceproblemwithacirculardomain G E B C Interior Exterior Analyticalsolution Bymatchingtheboundaryconditionat Interiorproblem Exteriorproblem Derivationofunknowncoefficients Trefftzmethod Fieldsolution Interior Exterior T completesetfunctions Interior Exterior Degeneratekernel Interiorproblem Exteriorproblem Fieldsolution Interior Exterior Derivationofunknowncoefficients MFS Trefftz MFS Relationshipbetweenthetwomethods Interior Exterior Bysetting Trefftzmethod MFS Matrix Matrix ill posedproblem Degeneratescaleproblem ill posedproblem Degeneratescaleproblem Circulants where Interior Degeneratescaleproblem R 1 NumericalExamples D B a NumericalExample1 NumericalExample2 NumericalExample3 NumericalExample4 TrefftzmethodandMFSforbiharmonicequation Analyticalsolution RelationshipbetweentheTrefftzmethodandMFS CoefficientsoftheTrefftzmethod CoefficientsoftheMFS Mappingmatrix K DecompositionoftheKmatrix DiagonalmatrixTR Nonuniqueness innumericalaspect Degeneratescaleproblem O K Specialsize positionofthesourcepoints TheoccurrenceofthedegeneratescalesusingtheMFS OnthecompletesetoftheTrefftzmethodandtheMFSusingthedegeneratekernel T completefunctionsoftheTrefftzmethod DegeneratekerneloftheMFS Freetermsforthebiharmonicequationusingthedualboundaryintegralequation HistoryoffreetermsinthedualBEM 2 Dand3 DLaplaceproblem 2 Dand3 Delasticityproblem W C Chenthesis 2 Dbiharmonicproblem Bump contourmethodTaylorseriesexpansion Freeterms Dualboundaryintegralequation Improperintegrals Bump contourmethod Forasmoothboundary y B B B B B D Singularpoint Explicitformsforthesixteenkernelfunctions Taylorexpansionforboundarydensityfunctions Boundary Domain vectorcomponent FreetermsofdualBIEforLaplaceproblem 2 Dproblem 3 Dproblem Half Half Dualboundaryintegralequations F P denotesthefinitepart Singularbehaviorofthesixteenkernels Freetermsduetothebumpintegralforthebiharmonicequation Dualboundaryintegralequationsforthebiharmonicproblem Afterderivingthesixteenimproperintegrals wehave forasmoothboundary Conclusions NewmethodstoderivethePoissonintegralformulabyusingthedegeneratekernelsandthenull fieldintegralequations Theoccurringmechanismofdegeneratescalesdependsontheformulationinsteadoftheboundaryconditions ItisinterestingtofindthattheT completesetintheTrefftzmethodisimbeddedinthedegeneratekernelsofMFS Weadoptthebump contourmethodtoderivethefreetermssurroundingthesingularity Forasmoothboundary thesumoffreetermsarehalf Conclusions Thanksforyourkindattention Imagemethod known unknown Imagemethod Closed formGreen sfunction Closed formGreen sfunction Interiorproblem a Imagepoint Series formGreen sfunction degeneratekernels Closed formandseries formGreen sfunctionsforinteriorandexteriorproblems Closed form Series form Interiorproblem Exteriorproblem Poissonintegralformula Poissonintegralformu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论