八年级数学下册4.3.2公式法教案2新版北师大版.docx_第1页
八年级数学下册4.3.2公式法教案2新版北师大版.docx_第2页
八年级数学下册4.3.2公式法教案2新版北师大版.docx_第3页
八年级数学下册4.3.2公式法教案2新版北师大版.docx_第4页
八年级数学下册4.3.2公式法教案2新版北师大版.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题: 4.3.2公式法 教学目标:1会用公式法(直接运用公式不超过两次)分解因式(指数是正整数)2经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和思考问题的习惯总结因式分解的一般分解步骤3培养学生灵活的运用知识的能力和积极思考的良好行为,体会因式分解在数学学科中的地位和价值教学重点与难点:重点:掌握运用完全平方公式进行分解因式难点:灵活地运用公式法或已学过的提公因式法进行因式分解,及正确判断因式分解的彻底性问题课前准备:多媒体课件教学过程:二、 创设情境,导入新课活动内容1:观察下图并回答问题.1.如图(1)老李去年承包了一块边长为a的正方形菜地,今年把菜地进行了扩建,建成了一个边长增加了b米的大正方形,问现在菜地的面积是多少? (试问你有几种表达方式)老四 2.如图(2)一老人有四个儿子,二儿子和三儿子是孪生兄弟.老人出门时给他们一张图纸,要他们按图纸分地. 分别表示老二、老三、老四土地的长、宽和面积.用两种方法表示老大土地的面积.上述两种方法表示的面积有何关系?处理方式: 问题1由学生口答教师板书完成如(a+b)2=a2+2ab+b2,问题2先让学生列出算式ab.ab.b2,(a-b) 2 和a2-2ab+b2, (a-b)2=a2-2ab+b2,然后让一名学生在黑板上板书过程,其余学生在练习本上完成完成后教师引导学生分析两个等式左边和右边的特点,从而引入出新课引导性语言举例:你能说说(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2是左边、右边各是什么形式?公式的右边边为多项式,左边为乘积的形式,从左向右的变形这是我们七年级学习什么公式?逆运用后变为a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2的形式此时公式的左边为多项式,右边为乘积的形式,这种变形我们称为什么?设计意图: 明确在实际情境下,通过计算面积得出因式分解的完全平方公式,并通过整式乘法的完全平方公式的比较,加深对因式分解的完全平方公式的认识.了解运用公式法的意义.活动内容2:展示学习目标1.理解完全平方公式的特点并会用完全平方公式分解因式2.能灵活应用提公因式法、公式法分解因式处理方式: 学生共同阅读,教师强调重点和难点.设计意图:学生明确本节课学习内容,带着任务有目的的学习.二、探究学习,感悟新知活动内容1:(多媒体出示)请同学们观察a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2完成以下探究问题,并与同伴交流1两个公式的共同特征: 左边为_,多项式有_项,其中有两项的符号_,并且这两项可化为两个数(或整式)的_,另一项为这两个数(或整式)的乘积的_倍.右边为_. 2.在以上公式中涉及几个数或式子? 分别代表什么? 处理方式:学生讨论交流,学生之间互相补充教师适时点评,强调:我们把公式a22ab+b2=(ab)2称为因式分解的完全平方公式,平方差公式法和完全平方公式法统称公式法.同时形象的表示为“22+2=()2” 与平方差公式一样,a、b可代表数,也可以代表代数式,这里既可为多项式,也可为单项式. 设计意图:本活动的设计意图先从观察多项式入手引导学生通过自主探究、合作交流,分析公式特征,让学生准确掌握公式,以便下一步熟练而灵活地利用公式分解因式,在这一过程中让学生再次感受因式分解与整式乘法的关系活动内容2:(多媒体出示)你能根据公式的特点解决以下问题吗?(多媒体出示)1.判断下列各式是不是完全平方式2.请补上一项,使下列多项式成为完全平方式3通过对以上问题的解决,你能说说一个多项式若能够运用完全平方公式进行因式分解,它应满足什么条件吗?处理方式:在老师的指导下,让学生通过自己的归纳找到因式分解中完全平方公式的特征,并能利用相关结论进行实例练习,完善学生对公式特征的相关描述并得出结论.同时要求学生对于不能利用完全平方公式进行分解因式的式子给出相应的解释.也可以师生共同总结: 判断一个多项式是否为完全平方式,要考虑三个条件,项数是三项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.也可以用下列口诀:首平方、尾平方,首尾相乘两倍在中央.设计意图:通过两道练习题让学生自己再一次归纳找到因式分解中完全平方公式的特征,加深对能够运用完全平方公式因式分解的多项式特点的认识三、例题解析,应用新知活动内容1:我们能够判断一个多项式能否使用完全平方公式进行因式分解,你能顺利的利用完全平方公式进行因式分解吗?请同学们观察例1中的各个多项式的特点,想一想如何进行因式分解(多媒体出示例1)例1把下列各式因式分解:处理方式:先给学生足够时间观察例1各式的特点,(1),(3)学生尝试板书解决,(2),(4)学生口述解题过程,教师板书.最后教师可进行有针对性的提问,让学生明确公式中的a、b在x2+14x +49、4a2+12a+9b、(m+n)2-6(m+n)+9、(m-2)2-2(m-2)(m+n)+(m+n)2 中分别指什么;可以写成哪两个数或式完全平方的形式.学生完成后教师可借助多媒体展示下图,让学生进一步理解并规范如何使用完全平方公式进行因式分解.(多媒体出示,同时给学生1分钟时间反思体会)解:巩固训练1:把下列各式因式分解 (1) a24a+4; (2)x2+4xy+4y2;; (3)(a+b)2-6(a+b)+9 处理方式:让三名学生主动到黑板板演,其他学生在练习本上完成教师巡视,适时点拨学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正参考答案:(1)a24a+4 =a22ab+22 = (a-2)2(2)x2+4xy+4y2=x2+2xy+(2y)2=(x+2y)2(3)(a+b)2-6(a+b)+9=(a+b)22 (a+b)3+32= (a+b-3)2.设计意图:例1的设计主要是直接利用完全平方公式因式分解,让学生体会公式中的a,b在此例中分别是什么通过巩固练习加深对知识的理解与应用活动内容2:(合作探究)通过以上解题过程,我们发现公式中a、b可以是一个数,也可以是一个单项式,也就是说可以是一个单项式,也可以是多项式的情况进行因式分解是否任何一个三项式都可以直接使用完全平方公式分解呢?请同学们观察例2,你能尝试将它进行因式分解吗? (多媒体出示例2,学生以小组为单位合作探究,教师巡视,寻找最佳学习小组,同时利用实物投影展示.各小组答案,教师适时鼓励.)例2把下列各式因式分解:处理方式:学生首先独立思考,小组内交流做法,实物投影展示,同时小组代表总结经验为:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式解:(1)3ax2+6axy+3ay2=3a (x2+2xy+y2) -(提公因式)=3a (x2+2xy+y2) -(运用完全平方公式)=3a (x+y)2解:(2)x2-4y2+4xy =(x2+4y2-4xy) =x2-2x2y+(2y)2=(x-2y)22你能说说本题的解题过程吗?学生思考后回答:先提公因式,再运用完全平方公式分解设计意图:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解. 巩固训练3:把下列多项式因式分解.(1) -8ab-16a2-b2; (2)2a2-a3-a;处理方式:两名学生板演,其余学生在练习本上完成完成后,让学生对板演的同学进行评价,教师及时点评表扬设计意图:主要是引导学生体会因式分解的基本步骤:多项式中若含有公因式,就要先提出公因式;然后再进一步分解,直至不能再分解为止四、联系拓广,能力提高活动内容:1. 用简便方法计算:2.将再加上一个整式,使它成为完全平方式,你有几种方法?3.一天,小明在纸上写了一个算式为4x2 +8x+11,并对小刚说:“无论x取何值,这个代数式的值都是正值,你不信试一试?”处理方式:两以小组为单位讨论交流,教师适当引导,实物投影展示答案.设计意图:题1考察学生灵活应用能力,需要学生有一定的数感将-40102003拆成-220052003的形式,从而利用完全平方公式进行简便运算.题2是一道开放题旨在考察学生的分类讨论思想.题3难道较大,对学有余力的孩子可以适当引导学习.主要是引导这3道习题的设置均有一定的难度,无需要求所有学生都能掌握,按学生自身能力分层学习即可.五、内容总结,方法归纳活动内容:从今天的课程中,你学到了哪些知识?如何运用完全平方公式分解因式?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系? 处理方式:学生以小组为单位讨论交流,教师倾听并适时鼓励得出结论:了解公式的结构特征, “对号入座”套用公式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解.简称“一提二套三分解”.设计意图:通过学生的回顾与反思,强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解六、限时达标,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题(同时多媒体出示)(必做题)1.判别下列各式是不是完全平方式,若是说出相应的a、b 各表示什么?2.把下列各式因式分解:(1)m212mn+36n2 (2)16a4+24a2b2+9b4(3)2xyx2y2 (4)412(xy)+9(xy)2(选做题)(3)当x取何值时,多项式x2+4x+9取得最小值?处理方式:学生独立完成导学案上必做题,教师巡视当堂批改,选做题做完的要点名表扬,学困生只要能做对一个也要表扬,因完全平方公式中的a与b 表示两个或两个以上字母时,学生运用起来有一定的困难,此时,教师应结合完全平方公式的特征给学生以有效的学法指导设计意图:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的特征是否清楚,对完全平方公式分解因式的运用是否得当,因式分解的步骤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论