




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Level set methodFrom Wikipedia, the free encyclopediaJump to: navigation, search The level set method (sometimes abbreviated as LSM) is a numerical technique for tracking interfaces and shapes. The advantage of the level set method is that one can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects (this is called the Eulerian approach).1 Also, the level set method makes it very easy to follow shapes that change topology, for example when a shape splits in two, develops holes, or the reverse of these operations. All these make the level set method a great tool for modeling time-varying objects, like inflation of an airbag, or a drop of oil floating in water.Contentshide 1 Level set method 2 The level set equation 3 History 4 See also 5 References 6 External links edit Level set methodAn illustration of the level set methodA very simple, yet powerful way to understand the level set method is by first studying the accompanying illustration before proceeding towards a more technical definition, which then becomes quite accessible. The figure on the right illustrates several important ideas about the level set method. In the upper-left corner we see a shape; that is, a bounded region with a well-behaved boundary. Below it, the red surface is the graph of a level set function determining this shape, and the flat blue region represents the x y plane. The boundary of the shape is then the zero level set of , while the shape itself is the set of points in the plane for which is positive (interior of the shape) or zero (at the boundary).In the top row we see the shape changing its topology by splitting in two. It would be quite hard to describe this transformation numerically by parameterizing the boundary of the shape and following its evolution. One would need an algorithm able to detect the moment the shape splits in two, and then construct parameterizations for the two newly obtained curves. On the other hand, if we look at the bottom row, we see that the level set function merely got translated downward. We see that it is much easier to work with a shape through its level set function than with the shape directly, where we would need to watch out for all the possible deformations the shape might undergo.Thus, in two dimensions, the level set method amounts to representing a closed curve (such as the shape in our example) using an auxiliary function , called the level set function. is represented as the zero level set of byand the level set method manipulates implicitly, through the function . is assumed to take positive values inside the region delimited by the curve and negative values outside.23edit The level set equationIf the curve moves in the normal direction with a speed v, then the level set function satisfies the level set equationHere, is the Euclidean norm (denoted customarily by single bars in PDEs), and t is time. This is a partial differential equation, in particular a Hamilton-Jacobi equation, and can be solved numerically, for example by using finite differences on a Cartesian grid.23The numerical solution of the level set equation, however, requires sophisticated techniques. Simple finite difference methods fail quickly. Upwinding methods, such as the Godunov method, fare better; however the level set method does not guarantee the conservation of the volume and the shape of the level set in an advection field that does conserve the shape and size, for example uniform or rotational velocity field. Instead, the shape of the level set may get severely distorted and the level set may vanish over several time steps. For this reason, high-order finite difference schemes are generally required, such as high-order essentially non-oscillatory (ENO) schemes, and even then, the feasibility of long-time simulations is questionable. Further sophisticated methods to deal with this difficulty have been developed, e.g., combinations of the level set method with tracing marker particles advected by the velocity field.4edit HistoryThe level set method was developed in the 1980s by the American mathematicians Stanley Osher and James Sethian. It has become popular in many disciplines, such as image processing, computer graphics, computational geometry, optimization, and computational fluid dynamics.A number of level set data structures have been developed to facilitate the use of the level set method in computer applications.edit See also Volume of fluid method Image segmentation Immersed Boundary Method LSM/J Level set method for drawing dynamical plane LSM/M Level set method for drawing parameter plane edit References1. Osher, S.; Sethian, J. A. (1988), Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79: 1249. 2. a b Osher, Stanley J.; Fedkiw, Ronald P. (2002). Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag. ISBN0-387-95482-1. 3. a b Sethian, James A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press. ISBN0-521-64557-3. 4. Enright, D.; Fedkiw, R. P.; Ferziger, J. H.; Mitchell, I. (2002), A hybrid particle level set method for improved interface capturing, J. Comput. Phys. 183: 83116. edit External links See Ronald Fedkiws academic web page for many stunning pictures and animations showing how the level set method can be used to model real life phenomena, like fire, water, cloth, fracturing materials, etc. Multivac is a C+ library for front tracking in 2D with level set methods. James Sethians web page on level set method. Stanley Oshers homepage. 水平集方法维基百科,自由的百科全书跳转到: 导航, 搜索 水平集方法 (Level Set Method) 是一种用于界面追踪和形状建模的数值技术. 水平集方法的优点是可以在笛卡尔网格(Cartesian grid)上对演化中的曲线曲面进行数值计算而不必对曲线曲面参数化(这是所谓的欧拉法(Eulerian approach).).1 水平集方法的另一个优点是可以方便的追踪物体的拓扑结构改变. 例如当物体的形状一分为二, 产生空洞, 或者相反的这些操作. 所有这些使得水平集方法成为随时间变化的物体建模的有力工具, 例如膨胀中的气囊, 掉落到水中的油滴.目录隐藏 1 水平集方法 2 水平集方程 3 历史 4 参阅 5 参考文献 编辑 水平集方法水平集方法示例理解水平集方法的最简单有效地方式是先学习相应的例子, 然后学习技术性很强的定义. 右侧的图片示例了水平集的几个重要思想. 在左上角有一个形状-由一个良性边界包围的有界区域. 在它的下面, 红色的曲面是相应的水平集函数 的图像, 的某个水平面决定了左上角的形状, 假设其中的蓝色平面即为x-y平面, 则形状的边界可以表示为 的零水平集, 并且该形状是平面上满足大于等于零的点的集合.在上面的一行, 形状改变其拓扑结构, 分裂为两个形状. 如果用边界曲线参数表示形状, 这一演化过程是很难表达的. 这需要一个算法能够检测到形状分裂的时刻, 然后为分裂后的曲线构造新的参数. 另一方面, 从下面的一行可以看出水平集函数仅仅是向下方移动了一点. 由于在直接法中我们需要监视所有形状可能发生的变化情况, 水平集方法处理形状曲线要比直接方法容易得多.在二维情况下, 水平集方法意味着将平面上的闭曲线 (正如示例中的形状) 表示为二维辅助函数 , 的零水平集然后通过函数 隐式的处理曲线 . 这一函数便被叫做水平集函数. 假设 在曲线 的内部取正值, 在曲线 的外部取负值. 23编辑 水平集方程如果零水平集以速度v沿着其法线运动, 这一运动可以表示为水平集函数的哈密顿-雅可比方程(Hamilton-Jacobi equation):这是一个偏微分方程, 并且可以求得数值解, 例如可以在笛卡尔网格上采用有限差分法.然而, 水平集方程的数值解需要复杂的技术.简单的有限差分法会很快导致不收敛. 迎风方法, 诸如Godunov 方法前进缓慢; 然而在水平对流场中, 水平集方法不保持水平集的体积和形状的守恒.编辑 历史美国数学家 Stanley Osher 和 James Sethian 于 19 世纪 80 年代开发出了水平集方法. 这一方法在许多学科广泛使用, 例如图像处理, 计算几何, 最优化和计算流体力学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 菜单策略与顾客满意度关联-洞察及研究
- 新型塑料家具环保性能研究-洞察及研究
- 盐厂知识产权申报制度
- 海洋能源开发的实施方案和技术细则
- 2025北京市通州区马驹桥镇招考20人考前自测高频考点模拟试题及1套参考答案详解
- 2025广西贵港市公安局港南分局面向社会招聘警务辅助人员16人模拟试卷及一套答案详解
- 2025昌吉州事业单位引进急需紧缺专业人才暨“千硕进昌”上半年引才考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025年上海城投集团社会招聘考前自测高频考点模拟试题及一套答案详解
- 2025空军军医大学幼儿园招聘(4人)考前自测高频考点模拟试题有完整答案详解
- 2025河南郑州市教育局直属32所学校招聘323人模拟试卷及答案详解(夺冠)
- 广东省2025年度初级注册安全工程师职业资格考试金属非金属矿山安全复习题及答案
- 十二经络课件
- Starter Unit 3 Welcome 单元测试(含答案)人教版(2024)七年级英语上册
- 玻璃委托代加工合同范本
- 年产9000吨塑料粒子项目报告表
- 秦朝服饰设计分享
- 子宫脱垂的中医护理查房
- 2024年12月英语四级真题及答案-第1套
- 大学生禁毒知识竞赛题库题及答案
- 2024年高校教师资格证考试题库(各地真题)
- 病房抢救室工作制度
评论
0/150
提交评论