




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程根的分布汤丽娅1、 教材及学情分析二次函数是重要的初等函数类型,一元二次方程是初中阶段学习的一个重要内容,含参的一元二次方程根的分布实际上是综合应用一元二次方程根与系数的关系、二次函数的基本性质、分类讨论思想、数形结合思想等思想方法来解决的一类专题性内容,是基于人教版九年级二次函数与人教版A版高中教材必修1第二章函数的基本性质的一节专题教学或研究性学习。本节教学结合解一元二次方程及根与系数的关系、二次函数的性质、函数的基本性质,是初等函数思想方法,特别是数形结合思想应用的典型。虽然教材并没有单独成节,但教材中却处处渗透着这一内容。一元二次方程根的分布问题是二次函数性质的集中体现,是对函数的基本思想方法的巩固和提升,是难得的好素材。本节教学内容是在学生初中已初步探讨学习了正比例函数、反比例函数、一次函数等简单函数,高中探讨了集合工具和函数的基本性质(单调性、奇偶性等)的基础上重新回到一元二次方程根的问题上,学生既能提升对函数、方程等知识的认识,又能提升对分类讨论、数形结合、转化等数学思想的认识,提高解决问题的能力,巩固、完善学生的函数知识、方法体系。2、 教学目标 1、知识与能力目标:加深对一元二次方程、二次函数的认识;利用函数知识、方法重新审视一元二次方程更本质的规律;会熟练利用二次函数的图象性质解决一元二次方程根的分布问题。 2、过程与方法目标:经历观察、归纳、概括等数学活动过程,获得一元二次方程根的分布与系数的重新夺得关系的条件限制(不等式组);通过运算获得具体、简洁的数量关系;通过创造性思维提出新的问题并尝试通过合作、交流解决所提出的新问题;并会运用规律解决综合问题,并对此进行反思、推广。 3、情感态度与价值观目标:体会二次函数乃至函数知识、思想的丰富多彩;能积极参与数学学习活动,体验数学学习充满着的探索性和创造性,锻炼克服困难的意志,建立自信;培养对知识的科学态度和辩证唯物主义观点。3、 重难点分析 重点:一元二次方程根的分布的函数解法 难点:利用换元法将不熟悉的方程转化为一元二次方程4、 教法与教具设计 教法:采用高中数学“问题解决”教学方法:创设问题情境发现问题探索问题解决问题发现问题探索(新)问题 ;采用多媒体演示,提高效率;师生互动,活跃课堂气氛。 教具:PPT 五、教学过程设计教学环节过程设计师生活动及设计意图 一 创 设 情 境 揭 示 课 题问题一 、是什么式子?将这三个式子相加又会得到什么?在相加后的式子再添上“”,就会变成我们熟悉的一元二次方程,请问一元二次方程的一般表达式是,且要注意什么?答:单项式,多项式,问题二若一元二次方程有两个实根,则两个根如何用系数表示(求根公式)?描述两根之间关系的韦达定理是?答:,问题三、解一元二次方程:1、 2、 问题四:求证方程在区间上有实数根?(预设:有些同学在草稿纸上开始试图用十字相乘法)思考:1、与有什么联系?2、 若a是方程的根,则函数值3、 求方程的根是否可以转化为函数图象与x轴交点得问题?总结:求一元二次方程根的分布问题可以转化为函数图象与x轴交点位置的问题,并指出下面讨论一般情况时只考虑a0时的情况。师在黑板上依次写下三个式子,回顾简单的知识,使学生获得成功感。回顾韦达定理,为下面例题讲解奠定基础巩固韦达定理,在第二个方程不能运用十字相乘法,使学生自然想到求根公式,为问题四作铺垫。学生在探究问题四遇到困难,激发学习新知的兴趣,继而引出这节课的内容。 二 例 题 讲 解 探 究 一 元 二 次 方 程 根 的 分 布 规 律例1 若关于x的方程有两个正根,则实数m的取值范围是_.解:(韦达定理法)由题意得: y2.5m(函数法)令x0方法总结:有两个正根(韦达定理法)(函数法)例2 若关于x的二次方程有两个负根,则实数k的取值范围是_.解:(韦达定理)由题意得yx(函数法)0xxy0或方法总结:(a0)有两个负根(韦达定理法)(函数法)有一个正根一个负根(韦达)(函数法)由两个例题总结出用函数法解决一元二次方程根的分布,在书写等价条件时应该考虑以下四点:开口方向值对称轴相应函数值例3 设是方程的两个实根,为常数,试在下表中画出对应的函数图象,填上对应的等价条件:xy0当图象:k等价条件:xy0当时,图象:k等价条件:xy0当时,图象:等价条件:xy0当时图象:等价条件:0x在例题中总结,从特殊到一般。例2中要考虑二次项系数的正负,使学生形成分类讨论的思想,提高数形结合的能力。在总结完前两种情况后,让学生自己归纳根出现一正一负的情况,回归让学生自主探索问题。例3与上述意图一致,通过让学生到黑板书写,了解到学生的学习情况,及时做好教学方法的转变。 三 应 用 新 知 体 验 成 功练习:已知关于x的一元二次方程2ax22x3a20的一个根大于1,另一个根在0与1之间,求a的取值范围一个根在区间(0,1)内,另一个根在区间(1,2)内;有一个根大于1,另一个根小于1;两个根都大于2. 及时巩固新知,为下面思考题作铺垫 四 思 考 中 完 善 知 识 体 系思考题:若方程有一个正根和负根,求k的取值范围。解:(换元法)令,则原方程化为有一个和一个的根令由此得 复合的一元二次方程,联系了新旧知识,完善了知识系统。 五 课 堂 小 结1利用函数的思想
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供水考试题及答案
- 点考试题及答案
- 抗震考试题及答案
- 中外名曲赏析知到智慧树答案
- 中西美食鉴赏知到智慧树答案
- 验光员模拟试题+答案
- 中西医结合临床科研思维与方法知到智慧树答案
- 多重耐药菌感染防控知识培训考核试卷(附答案)
- 第四章血液循环阶梯测试题(附答案)
- 2025年公务员特定项目担保合同规范文本
- 医院数据分级分类制度
- 渤海大学《软件工程》2022-2023学年第一学期期末试卷
- 税务会计岗位招聘笔试题及解答(某大型国企)2024年
- ICD-10疾病编码完整版
- 消防设备设施操作讲解培训讲课文档
- 内分泌科医疗管理制度
- 临床开展十二项细胞因子检测临床意义
- FlowmasterV7中文技术手册
- 房屋承包出租合同
- 石油化学工业的发展历程与前景
- 《滚珠丝杠螺母副》课件
评论
0/150
提交评论