




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8 1空间几何体的三视图 表面积和体积 高考理数 1 棱柱的结构特征 1 棱柱的主要结构特征 有两个面互相平行 其余各面都是四边形 并且每相邻两个四边形的公共边都互相平行 棱柱的两个互相平行的面叫棱柱的底面 其余各面叫棱柱的侧面 两侧面的公共边叫做棱柱的侧棱 棱柱的高指两底面之间的距离 即从一底面上任一点向另一底面作垂线 这点与垂足 垂线与底面的交点 之间的距离 2 棱柱的分类 按侧棱与底面的关系可分为斜棱柱 直棱柱 按底面多边形的边数可分为三棱柱 四棱柱 五棱柱等 底面是正多边形的直棱柱又称为正棱柱 2 棱锥的结构特征 1 棱锥的定义 有一个面是多边形 其余各面是有一个公共顶点的三角形 这些面围成的几何体叫做棱锥 2 正棱锥的定义 如果一个棱锥的底面是正多边形 并且顶点在底面内的射影是底面中心 这样 知识清单 的棱锥叫做正棱锥 3 正棱锥的性质 a 各侧棱长度相等 各侧面都是全等的等腰三角形 各等腰三角形底边上的高相等 它叫做正棱锥的斜高 b 棱锥的高 斜高和斜足与底面中心连线组成一个直角三角形 棱锥的高 侧棱和侧棱在底面内的射影也组成一个直角三角形 3 圆柱 圆锥 圆台的结构特征以矩形一边 直角三角形一直角边 直角梯形中垂直于底边的腰所在的直线为旋转轴 将其余各边旋转一周而形成的曲面所围成的几何体分别叫做圆柱 圆锥 圆台 其中旋转轴叫做所围成的几何体的轴 在轴上的这条边叫做这个几何体的高 垂直于轴的边旋转而成的圆面叫做这个几何体的底面 不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面 无论旋转到什么位置 这条边都叫做侧面的母线 4 用平行于底面的平面去截棱锥 圆锥 截面与底面间的部分分别叫棱台 圆台 5 球的结构特征 1 一个半圆围绕着它的直径所在的直线旋转一周所形成的曲面叫做球面 球面所围成的几何体叫做球 形成球的半圆的圆心叫做球心 连结球面上一点和球心的线段叫球的半径 连结球面上两点且通过球心的线段叫球的直径 2 球面被不经过球心的平面截得的圆叫做球的小圆 被经过球心的平面截得的圆叫做球的大圆 球的截面性质 r 其中r为截面圆的半径 r为球的半径 d为球心o到截面圆的圆心的距离 6 三视图几何体的三视图是指 正视图 侧视图 俯视图 又称为主视图 左视图 俯视图 7 三视图的画法要求 1 在画三视图时 重叠的线只画一条 被挡住的线要画成虚线 2 三视图中的正视图 侧视图 俯视图分别是从几何体的正前方 正左方 正上方观察几何 体画出的轮廓线 画三视图的基本要求 正俯一样长 俯侧一样宽 正侧一样高 3 由三视图想象几何体特征时要根据 长对正 高平齐 宽相等 的基本原则 8 水平放置的平面图形的直观图的斜二测画法的步骤 1 在已知图形中取互相垂直的x轴和y轴 两轴相交于o点 画直观图时 把它们画成对应的x 轴与y 轴 两轴相交于o 且使 x o y 45 或135 用它们确定的平面表示水平面 2 已知图形中平行于x轴或y轴的线段 在直观图中 分别画成平行于x 轴或y 轴的线段 3 已知图形中平行于x轴的线段 在直观图中保持原长度不变 平行于y轴的线段 长度变为原来的一半 注 平面图形的原始面积和直观图面积有以下关系 2 知识拓展 1 空间几何体的数量关系体现在三视图中 正视图和侧视图的 高平齐 正视图和俯视图的 长对正 侧视图和俯视图的 宽相等 其中 正视图 侧视图的高就是空间几何体的高 正视图 俯视图的长就是空间几何体的最大长度 侧视图 俯视图的宽就是空间几何体的最大宽度 要尽量按照这个规则画空间几何体的三视图 2 要注意领会和掌握两种数学思想方法 割补法与等积法 割补法是割法与补法的总称 补法是把不规则的 不熟悉的或复杂的 几何体延伸或补成规则的 熟悉的或简单的 几何体 把不完整的图形补成完整的图形 割法是把复杂的 不规则的 几何体切割成简单的 规则的 几何体 割与补是对立统一的 等积法包括等面积法和等体积法 等积法的前提是几何图形 或几何体 的面积 或体积 通过已知条件可以得到 利用等积法可以求解几何图形的高或几何体的高 特别是在求三角形的高和三棱锥的高时 这一方法可以提高解题效率 1 三视图的画法要坚持以下原则 1 长对正 即正视图和俯视图的长相等 2 高平齐 即正视图和侧视图的高相等 3 宽相等 即侧视图和俯视图的宽相等 4 看不见的轮廓线要用虚线表示 2 由三视图判断几何体的形状主要结合常见几何体的三视图来确定 例1 2013课标全国 7 5分 一个四面体的顶点在空间直角坐标系o xyz中的坐标分别是 1 0 1 1 1 0 0 1 1 0 0 0 画该四面体三视图中的正视图时 以zox平面为投影面 则得到的正视图可以为 突破方法 方法1几何体的三视图 解析设o 0 0 0 a 1 0 1 b 1 1 0 c 0 1 1 将以o a b c为顶点的四面体补成一正方体后 由于oa bc 所以该几何体以zox平面为投影面的正视图为a 答案a1 1 2012湖南 3 5分 某几何体的正视图和侧视图均如图所示 则该几何体的俯视图不可能是 答案d解析a图是两个圆柱的组合体的俯视图 b图是一个四棱柱与一个圆柱的组合体的俯视图 c图是一个底面为等腰直角三角形的三棱柱与一个四棱柱的组合体的俯视图 采用排除法 故选d 1 表面积是各个面的面积之和 求多面体的表面积时 只需将它们沿着棱剪开后展成平面图形 利用求平面图形面积的方法求多面体的表面积 求旋转体的表面积时 可从旋转体的生成过程及其几何特征入手 将其展开求表面积 但要搞清它们的底面半径 母线长与对应侧面展开图中的边长关系 2 求不规则几何体的表面积时 通常将所给几何体分割成基本的柱 锥 台体 先求出这些基本的柱 锥 台体的表面积 再通过求和或作差 求出几何体的表面积 3 正棱锥 正棱台 正棱柱的侧面积公式间的联系 当c 0时 棱锥可以看作上底面周长为0的棱台 方法2几何体表面积的求解方法 s abc ac bc 5 4 10 在 cmb中 bcm 90 bm 5 由三视图知dm 面abc dmb 90 db dc2 bc2 52 42 41 db2 bcd为直角三角形 dcb 90 s bcd 5 4 10 图 1 在 abd中 如图 2 s abd 2 6 6 s表面积 10 10 10 6 30 6 故选b 图 2 答案b2 1 2016吉林长白山一模 6 5分 如图 一个空间几何体的正视图 侧视图都是面积为 一个内角为60 的菱形 俯视图为正方形 那么这个几何体的表面积为 1 割补法 求一个几何体的体积可以将这个几何体分割成几个柱体 锥体 分别求出柱体和锥体的体积 从而得出几何体的体积 2 等积变换法 利用三棱锥的任一个面可作为三棱锥的底面 例3 2015甘肃河西一模 5 若一个底面为正三角形 侧棱与底面垂直的棱柱的三视图如图所示 则这个棱柱的体积为 a 12b 36c 27d 6解析此几何体为一个直三棱柱 棱柱的高是4 底面正三角形的高是3 设底面正三角形的边 方法3几何体的体积的求解方法 长为a 则a 3 a 6 故三棱柱的体积v 62 4 36 故选b 答案b3 1 2012江苏 7 5分 如图 在长方体abc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储管理员岗位面试问题及答案
- 威海市重点中学2025届化学高二下期末预测试题含解析
- 2025届黑龙江省齐齐哈尔市第八中学高二下化学期末统考试题含解析
- 河北省承德市丰宁县凤山第一中学2025年高二下化学期末联考模拟试题含解析
- 2025届广西钦州市灵山县化学高一下期末监测模拟试题含解析
- 江苏装饰装修管理办法
- 新疆旅居人员管理办法
- 机械外协加工管理办法
- 人脸3D建模与渲染-洞察及研究
- 北京隔离薪资管理办法
- 2025年广东高考政治试卷真题答案详解讲评(课件)
- 国家开放大学2024年春季学期期末统一考试《中文学科论文写作》试题(试卷代号11332)
- 重庆商墅市场研究
- GB/T 33855-2017母婴保健服务场所通用要求
- GB 8109-2005推车式灭火器
- 支架植入知情同意书模板
- 人教版四年级上册语文生字组词
- 茶文化讲座优选ppt资料
- 水不同温度的热焓值
- 绿化工程施工技术方案及措施(可编辑)
- 国航特殊餐食代码表
评论
0/150
提交评论