




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
襄阳市第四十七中学九年级数学组 三角形及四边形综合题1、 (2010湘潭)RtABC与RtFED是两块全等的含30o、60o角的三角板,按如图(一)所示拼在一起,CB与DE重合(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将ABC绕点O顺时钟方向旋转到如图(二)中位置,直线与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想 (3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明).2如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,DMN为等边三角形(点M的位置改变时, DMN也随之整体移动) (1)如图,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由 图图图ABCDEF3、如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD(1)判断ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧)试探究线段AD、BE、DE长度之间有什么关系?并给予证明图1图2图34、在ABC中,AB=BC=2,ABC=120,将ABC绕点B顺时针旋转角(0120),得A1BC1,交AC于点E,AC分别交A1C1、BC于D、F两点(1)如图,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图,当=30时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长C1A1FEDCBA图C1A1FEDCBA图5、(2009年黄石)如图, 中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点(1)探究:线段与的数量关系并加以证明;(2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由;(3)当点运动到何处,且满足什么条件时,四边形是正方形?AFNDCBMEO6、如图。已知正方形ABCD在直线MN的上方,CB在直线在MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG,连接GD,FC.(1)求证:ADGABE(2)观察并猜测FCN的度数,并说明理由。(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=a,BC=b(a,b为常数),E是线段BC上一动点(不含断电B,C)以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上,判断当点E由B向C运动时,FCN的大小是否总保持不变,若不变,用含a,b的代数式表示tanFCN的值;若FCN的大小发生变化,请举例说明。 图1 图27、如图,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上. (1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示BEF的面积;(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分?若存在,求出此时BE的长;若不存在,请说明理由.8. 如图,已知ABC中,D是AB上一动点,DEBC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形,与AB、AC分别交于点M、N.(1)证明:ADE ;(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式. 当x为何值时y有最大值?9如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB; 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由;EA DB CNM 当AMBMCM的最小值为时,求正方形的边长. 10如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E、F移动过程中:(1)EAF的大小是否有变化?请说明理由(2)ECF的周长是否有变化?请说明理由11.如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AGCE.(1) 当正方形GFED绕D旋转到如图11的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由.(2) 当正方形GFED绕D旋转到如图12的位置时,延长CE交AG于H,交AD于M.求证:AGCH;当AD=4,DG=时,求CH的长。ABCDEF图110GAD图11FEBCGADBCEFHM图1212已知:在菱形中,是对角线上的一动点(1)如图甲,为线段上一点,连接并延长交于点,当是的中点时,求证:;(2)如图乙,连结并延长,与交于点,与的延长线交于点若,求和的长来源:学*科*网13(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点若AMN=90,求证:AM=MN下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明图1证明:在边AB上截取AE=MC,连ME图2(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是ACP的平分线上一点,则当AMN=60时,结论AM=MN是否还成立?请说明理由(3)若将(1)中的“正方形ABCD”改为“正边形ABCDX”,请你作出猜想:当AMN=时,结论AM=MN仍然成立(直接写出答案,不需要证明)14. (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,AOF90.求证:BECF.(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,FOH90, EF4.求GH的长.15如图1,已知ABC=90,ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60得到线段AQ,连结QE并延长交射线BC于点F.(1)如图2,当BP=BA时,EBF= ,猜想QFC= ;(2)如图1,当点P为射线BC上任意一点时,猜想QFC的度数,并加以证明;图2ABEQPFC图1ACBEQFP(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式16.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF;DA(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论证明:FOCEBM17如图1所示,在直角梯形ABCD中,ADBC,ABBC,DCB=75,以CD为一边的等边DCE的另一顶点E在腰AB上(1)求AED的度数;(2)求证:AB=BC;(3)如图2所示,若F为线段CD上一点,FBC=30ABCDEABCDEF求 的值 18.如图,RtAB C 是由RtABC绕点A顺时针旋转得到的,连结CC 交斜边于点E,CC 的延长线交BB 于点F(1)证明:ACEFBE;(2)设ABC=,CAC =,试探索、满足什么关系时,ACE与FBE是全等三角形,并说明理由19.如图6,已知是等边三角形,点、分别在线段、上,.(1) 求证:四边形是平行四边形(2) 若,求证.20 已知:如图,在直角梯形ABCD中,ADBC,ABC90点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M点F在线段ME上,且满足CFAD,MFMA(1)若MFC120,求证:AM2MB;(2)求证:MPB90 FCM21. 如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中语文古诗词背诵中的文化传承与创新教育研究论文
- 艺术类时间管理制度
- 苏州护理院管理制度
- 茶水吸烟处管理制度
- 高校公寓房管理制度
- 小学语文《我多想去看看》课件
- 一年级《姓氏歌》课件
- 产品推销创意演讲
- 2025年南充市中考生物试卷真题(含标准答案及解析)
- 见证取样考试题库
- 2025年山煤国际招聘笔试冲刺题(带答案解析)
- 2024-2025学年初中英语七年级下册期末考试综合测试卷及参考答案
- 2025年山东省济南市长清区中考二模道德与法治试题(含答案)
- 冠心病的规范化诊培训课件
- 未来中国检测市场发展趋势简析(精)
- 2025年AI+赋能中小企业:出海营销的创新与发展
- 2025年福建省粮食行业职业技能竞赛(粮油保管员)备赛试题库(含答案)
- 四川电网新建电源并网服务指南(2025年)
- 2025安全月查找身边安全隐患:生产现场实拍隐患图解
- 民航危险品运输分类具有多重危险性的物质物品Dangerou
- 江苏省淮安市2022年中考化学真题(解析版)
评论
0/150
提交评论