高中数学 332《函数的极值与导数函数的最大(小)值与导数》同步课件 新人教A版选修11.ppt_第1页
高中数学 332《函数的极值与导数函数的最大(小)值与导数》同步课件 新人教A版选修11.ppt_第2页
高中数学 332《函数的极值与导数函数的最大(小)值与导数》同步课件 新人教A版选修11.ppt_第3页
高中数学 332《函数的极值与导数函数的最大(小)值与导数》同步课件 新人教A版选修11.ppt_第4页
高中数学 332《函数的极值与导数函数的最大(小)值与导数》同步课件 新人教A版选修11.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 知识与技能结合函数的图象 了解函数在某点取得极值的必要条件和充分条件 2 过程与方法会用导数求不超过三次的多项式函数的极值 以及在给定区间上求最大值 最小值 本节重点 利用导数的知识求函数的极值 本节难点 函数的极值与导数的关系 利用函数的导数求极值时 首先要确定函数的定义域 其次 为了清楚起见 可用导数为零的点 将函数的定义域分成若干小开区间 并列成表格 判断导函数在各个小开区间的符号 求函数的最大值和最小值 需要先确定函数的极大值和极小值 极值是一个局部概念并且不唯一 极大值与极小值之间无确定的大小关系 f x0 0只是可导函数f x 在x0取得极值的必要条件 不是充分条件 例如 函数f x x3 f 0 0但x 0不是f x x3的极值点 1 理解极值概念时需注意的几点 1 函数的极值是一个局部性的概念 是仅对某一点的左右两侧附近的点而言的 2 极值点是函数定义域内的点 而函数定义域的端点绝不是函数的极值点 3 若f x 在 a b 内有极值 那么f x 在 a b 内绝不是单调函数 即在定义域区间上的单调函数没有极值 4 极大值与极小值没有必然的大小关系 一个函数在其定义域内可以有许多个极小值和极大值 在某一点的极小值可能大于另一点的极大值 如图 1 5 若函数f x 在 a b 上有极值 它的极值点的分布是有规律的 如图 2 所示 相邻两个极大值点之间必有一个极小值点 同样相邻两个极小值点之间必有一个极大值点 2 导数为0的点不一定是极值点 3 正确理解 在闭区间 a b 上连续的函数f x 必有最值 此性质包括两个条件 4 正确区分极值和最值 1 函数的最值是比较整个定义区间的函数值得出的 函数的最大值和最小值可以在极值点 不可导点 区间的端点取得 函数的极值是比较极值点附近的函数值得出的 最值具有绝对性 极值具有相对性 2 函数的最值是一个整体性概念 最大值必须是整个区间上所有函数值中的最大的值 最小值是所有函数值中的最小的值 极值只能在区间内取得 但最值可以在端点处取得 极值有可能成为最值 5 若连续函数在区间 a b 内只有一个极值 那么极大值就是最大值 极小值就是最小值 1 已知函数y f x 及其定义域内一点x 对于包含x0在内的开区间内的所有点x 如果都有 则称函数f x 在点x0处取得 并把x0称为函数f x 的一个 如果都有 则称函数f x 在点x0处取得 并把x0称为函数f x 的一个 极大值与极小值统称为 极大值点与极小值点统称为 f x f x0 极大值 极大值点 f x f x0 极小值 极小值点 极值 极值点 2 假设函数y f x 在闭区间 a b 上的图象是一条 该函数在 a b 上一定能够取得与 该函数在 a b 内是 该函数的最值必在取得 3 当函数f x 在点x0处连续时 判断f x0 是否存在极大 小 值的方法是 1 如果在x0附近的左侧 右侧 那么f x0 是极值 连续不断的曲线 最大值 最小值 可导的 极值点或区间端点 f x 0 f x 0 大 2 如果在x0附近的左侧 右侧 那么f x0 是极值 3 如果f x 在点x0的左右两侧符号不变 则f x0 函数f x 的极值 f x 0 f x 0 小 不是 例1 求函数y 3x3 x 1的极值 分析 首先对函数求导 求得y 然后求方程y 0的根 再检查y 在方程根左右的值的符号 如果左正右负 那么y在这个根处取得极大值 如果左负右正 那么y在这个根处取得极小值 点评 熟记极值的定义是做好本题的关键 要利用求函数极值的一般步骤求解 函数y x3 3x2 9x 2 x 2 有 a 极大值为5 极小值为 27b 极大值为5 极小值为 11c 极大值为5 无极小值d 极大值为 27 无极小值 答案 c 解析 f x 3x2 6x 9 3 x 1 x 3 令f x 0得x1 1 x2 3 舍去 当 2 x 1时 f x 0当 1 x 2时 f x 0 当x 1时f x 有极大值 f x 极大值 f 1 5 无极小值 故应选c 例2 求函数f x x3 2x2 1在区间 1 2 上的最大值与最小值 分析 首先求f x 在 1 2 内的极值 然后将f x 的各极值与f 1 f 2 比较 其中最大的一个是最大值 最小的一个是最小值 解析 f x 3x2 4x 故f x 最大值 1 f x 最小值 2 点评 利用求最值的步骤求解 函数最大值及最小值点必在下面各种点之中 导数等于0的点 导数不存在的点或区间的端点 函数在区间 a b 上连续是f x 在 a b 上存在最大值的充分而非必要条件 求函数f x x4 8x2 2在 1 3 上的最大值与最小值 解析 f x 4x3 16x 4x x 2 x 2 令f x 0 解得x1 2 x2 0 x3 2 其中x2 0 x3 2在 1 3 内 计算得f 0 2 f 2 14 f 1 5 f 3 11 故f x 在 1 3 上的最大值是11 最小值是 14 例3 已知f x ax3 bx2 cx a 0 在x 1时取得极值 且f 1 1 1 试求常数a b c的值 2 试判断x 1时函数取得极小值还是极大值 并说明理由 解析 1 由f 1 f 1 0 得3a 2b c 0 3a 2b c 0 又f 1 1 a b c 1 点评 若函数f x 在x0处取得极值 则一定有f x0 0 因此我们可根据极值得到一个方程 来解决参数 而x10 x 1 再代入f x1 或f x2 得a 2 a 2 b 0 例4 已知函数f x ax4lnx bx4 c x 0 在x 1处取得极值 3 c 其中a b c为常数 1 试确定a b的值 2 若对任意x 0 不等式f x 2c2恒成立 求c的取值范围 点评 恒成立转化为最值 即用导数求最值 函数的极值 最值常与单调性 不等式结合出解答题 是历年考试的重点 一般分为二至三问 要注意它们之间的内在联系 另外解此类问题要注意极值 最值的注意事项 例5 已知f x x3 3ax2 bx a2在x 1时有极值0 求常数a b的值 误解 因为f x 在x 1时有极值0 且f x 3x2 6ax b 辨析 根据极值定义 函数先减后增为极小值 函数先增后减为极大值 此题未验证x 1时函数两侧的单调性 故求错 正解 在上述解法之后继续 当a 1 b 3时 f x 3x2 6x 3 3 x 1 2 0 所以f x 在r上为增函数 无极值 故舍去 当a 2 b 9时 f x 3x2 12x 9 3 x 1 x 3 当x 3 1 时 f x 为减函数 当x 1 时 f x 为增函数 所以f x 在x 1时取得极小值 因此a 2 b 9 一 选择题1 若函数y f x 是定义在r上的可导函数 则f x 0是x0为函数y f x 的极值点的 a 充分不必要条件b 必要不充分条件c 充要条件d 既不充分也不必要条件 答案 b 解析 如y x3 y 3x2 y x 0 0 但x 0不是函数y x3的极值点 答案 a 3 函数y x3 1的极大值是 a 1b 0c 2d 不存在 答案 d 解析 y 3x2 0在r上恒成立 函数y x3 1在r上是单调增函数 函数y x3 1无极值 4 y f x 2x3 3x2 a的极大值是6 那么a等于 a 6b 0c 5d 1 答案 a 解析 f x 6x2 6x 令f x 0 得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论