高中数学 圆的标准方程说课教学课件 新人教A版必修2.ppt_第1页
高中数学 圆的标准方程说课教学课件 新人教A版必修2.ppt_第2页
高中数学 圆的标准方程说课教学课件 新人教A版必修2.ppt_第3页
高中数学 圆的标准方程说课教学课件 新人教A版必修2.ppt_第4页
高中数学 圆的标准方程说课教学课件 新人教A版必修2.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的标准方程 教材结构分析 圆的方程 安排在高中数学必修二第四章第一节 圆作为常见的简单几何图形 在实际生活和生产实践中有着广泛的应用 圆的方程属于解析几何学的基础知识 是研究二次曲线的开始 对后续直线与圆的位置关系 圆锥曲线等内容的学习 无论在知识上还是方法上都有着积极的意义 所以本节内容在整个解析几何中起着承前启后的作用 教学目标 知识与技能1 掌握圆的标准方程 2 会由圆的标准方程写出圆的半径和圆心坐标 能根据条件写出圆的标准方程 3 利用圆的标准方程解决简单的实际问题 教学目标 过程与方法1 进一步培养学生用代数方法研究几何问题的能力 2 加深对数形结合思想的理解以及对待定系数法的运用 3 通过圆的方程在实际中的应用 增强学生用数学的意识 教学目标 情感 态度与价值观1 培养学生主动探究知识 合作交流的意识 2 通过圆的方程在实际中的应用 体验数学与生活的联系 培养学生用数学的眼光审视现实生活问题的意识 教学重点与难点 重点 圆的标准方程的求法及其应用 难点 1 会根据不同的已知条件求圆的标准方程 2 选择恰当的坐标系解决与圆有关的实际问题 教学过程与设计 创设情境 启迪思维 问题一 最著名的古桥要数我国河北赵县建于1500年前的单拱石桥 赵州桥 它的设计思想和建造工艺师世界石拱桥的卓越典范 对直接后代的桥梁建筑有着十分深远的影响 它全长64 40米 最大圆拱跨径37 4米 拱高7 2米 这座桥建得科学合理精巧新奇 造型优美 通体为巨大花岗岩石块组成 很像天上的长虹 如此雄伟秀逸的圆拱形的建筑 是著名匠师李春建造的 它的建造应该说是中国古代数学 物理学 工程学融合的结晶 体现了中国古代劳动人民的智慧和力量 在赞叹之余 我们能否确定出圆拱所属圆的大小和中心呢 什么叫做圆 深入探究获得新知 圆的定义 平面内与定点距离等于定长的点的集合 轨迹 是圆 定点就是圆心 定长就是半径 哪几个要素定圆 圆心定位半径定形 深入探究 获得新知 问题二 1 你能得到圆心在原点 半径为r的圆的方程 2 如果圆心在c a b 半径为r时又如何呢 o a r 0 p x y b r 0 y x 取圆上任意一点p x y 则 op r 即 于是 这就是圆心在原点 半径为r的圆的方程 如果一个圆的圆心不在原点 而在点c b 上 且半径为r 求此圆的方程 x 0 根椐两点间的距离公式得 即 现在让我们来看看这个问题 y 应用举例 巩固提高 直接应用内化新知 问题三 写出圆心为 半径长等于5的圆的方程 并判断点 是否在这个圆上 怎样判断点在圆内呢 还是在圆外呢 点与圆的位置关系 从上题知道 判断一个点在不在某个圆上 只需将这个点的坐标代入这个圆的方程 如果能使圆的方程成立 则在这个圆上 反之如果不成立则不在这个圆上 问题四 的三个顶点的坐标分别a 5 1 b 7 3 c 2 8 求它的外接圆的方程 待定系数法 灵活应用提升能力 应用举例 巩固提高 确定圆的方程的方法和步骤 1 圆的标准方程中含有三个参变数 必须具备三个独立的条件 才能定出一个圆的方程 当已知曲线为圆时 一般采用待定系数法求圆的方程 2 求圆的标准方程的一般步骤为 1 根据题意 设所求的圆的标准方程为 x a 2 y b 2 r2 2 根据已知条件 建立关于a b r的方程组 3 解此方程组 求出a b r的值 4 将所得的a b r的值代回所设的圆的方程中 就得到所求的圆的标准方程 设 列 求 圆心 两条弦的中垂线的交点 半径 圆心到圆上一点 x y o a 5 1 b 7 3 c 2 8 问题四 的三个顶点的坐标分别a 5 1 b 7 3 c 2 8 求它的外接圆的方程 d e 灵活应用提升能力 应用举例 巩固提高 问题五 如图是某圆拱桥的一孔圆拱的示意图 该圆拱跨度ab 20m 拱高op 4m 在建造时每隔4m需用一个支柱支撑 求支柱的长度 精确到0 01m 实际运用 回归自然 解 建立如图所示的坐标系 设圆心坐标是 0 b 圆的半径是r 则圆的方程是x2 y b 2 r2 答 支柱a2p2的长度约为3 86m 反馈训练 形成方法 问题六 1 写出下列各圆的标准方程 1 圆心在原点 半径为3 2 经过点p 5 1 圆心在点c 8 3 2 写出下列各圆的圆心坐标和半径 1 x 2 2 y2 2 2 2 x 4 2 y 3 2 5 3 x a 2 y2 a2 3 已知三角形aob的顶点坐标分别是a 4 0 b 0 3 o 0 0 求三角形aob的外接圆方程 解 设所求外接圆的方程为 所求圆的方程为 p121练习3 圆心 直径的中点 半径 直径的一半 解 设点c a b 为直径的中点 则 圆的方程为 因此点m在圆上 点n在圆外 点q在圆内 圆心坐标为 5 6 小结反思 拓展引申 圆心c a b 半径r x y o g a b c 1 圆的标准方程 2 圆心 两条直线的交点 弦的垂直平分线 直径的中点 3 会用待定系数法求圆的方程 小结反思 拓展引申 分层作业 a 巩固型作业 教材p124 习题4 1 1 2 3 b 思维拓展型作业 试推导过圆x2 y2 r2上一点m xo yo 的切线方程 小结反思 拓展引申 激发新疑 课后练习 1 把圆的标准方程展开后是什么形式 2 方程表示什么图形 学情分析 圆的方程是学生在初中学习了圆的概念和基本性质的基础上进行研究的 但由于学生学习解析几何的时间还不长 学习程度较浅 且对坐标法的运用还不够熟练 在学习过程中难免会出现困难 另外学生在探究问题的能力 合作交流的意识等方面有待加强 教学方法 启发式 问题教学法 学法分析 1 坐标法2 三个独立条件确定圆3 求a b r时可用待定系数法 教学评价 一 突出重点抓住关键突破难点 二 学生主体教师主导探究主线 三 培养思维提升能力激励创新 直接运用 灵活运用 实际运用 应用举例 巩固提高 问题五 如图是某圆拱桥的一孔圆拱的示意图 该圆拱跨度ab 20m 拱高op 4m 在建造时每隔4m需用一个支柱支撑 求支柱的长度 精确到0 01m 实际运用 回归自然 问题二 1 根据问题一的探究能不能得到圆心在原点 半径为r的圆的方程 2 如果圆心在c a b 半径为r时又如何呢 问题四 的三个顶点的坐标分别a 5 1 b 7 3 c 2 8 求它的外接圆的方程 圆心在原点时 半径为r的圆的标准方程为 x2 y2 r2 特殊 圆心为c a b 半径为r的圆的标准方程为 x a 2 y b 2 r2 一般 问题三 点与圆的位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论