已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
#encoding:utf-8 import matplotlib.pylab as plt import numpy as np import random from scipy.linalg import norm import PIL.Image class Rbm: def _init_(self,n_visul, n_hidden, max_epoch = 50, batch_size = 110, penalty = 2e-4, anneal = False, w = None, v_bias = None, h_bias = None): self.n_visible = n_visul self.n_hidden = n_hidden self.max_epoch = max_epoch self.batch_size = batch_size self.penalty = penalty self.anneal = anneal if w is None: self.w = np.random.random(self.n_visible, self.n_hidden) * 0.1 #初始化可见层到隐层的权重矩阵 if v_bias is None: self.v_bias = np.zeros(1, self.n_visible) if h_bias is None: self.h_bias = np.zeros(1, self.n_hidden) def sigmod(self, z): return 1.0 / (1.0 + np.exp( -z ) #定义一个激活函数 def forward(self, vis): #if(len(vis.shape) = 1): #vis = np.array(vis) #vis = vis.transpose() #if(vis.shape1 != self.w.shape0): vis = vis.transpose() pre_sigmod_input = np.dot(vis, self.w) + self.h_bias #按照矩阵乘法进行相乘 return self.sigmod(pre_sigmod_input) def backward(self, vis): #if(len(vis.shape) = 1): #vis = np.array(vis) #vis = vis.transpose() #if(vis.shape0 != self.w.shape1): back_sigmod_input = np.dot(vis, self.w.transpose() + self.v_bias return self.sigmod(back_sigmod_input) def batch(self): eta = 0.1 momentum = 0.5 d,N = self.x.shape num_batchs = int(round(N / self.batch_size) + 1 #训练批次大小 groups = np.ravel(np.repeat(range(0, num_batchs), self.batch_size, axis = 0) groups = groups0 : N perm = range(0, N) random.shuffle(perm) groups = groupsperm batch_data = for i in range(0, num_batchs): index = groups = i batch_data.append(self.x:, index) return batch_data def rbmBB(self, x): self.x = x eta = 0.1 momentum = 0.5 W = self.w b = self.h_bias c = self.v_bias Wavg = W bavg = b cavg = c Winc = np.zeros(self.n_visible, self.n_hidden) binc = np.zeros(self.n_hidden) cinc = np.zeros(self.n_visible) avgstart = self.max_epoch - 5; batch_data = self.batch() num_batch = len(batch_data) oldpenalty= self.penalty t = 1 errors = for epoch in range(0, self.max_epoch): err_sum = 0.0 if(self.anneal): penalty = oldpenalty - 0.9 * epoch / self.max_epoch * oldpenalty for batch in range(0, num_batch): num_dims, num_cases = batch_databatch.shape data = batch_databatch #forward ph = self.forward(data) ph_states = np.zeros(num_cases, self.n_hidden) ph_statesph np.random.random(num_cases, self.n_hidden) = 1 #backward nh_states = ph_states neg_data = self.backward(nh_states) neg_data_states = np.zeros(num_cases, num_dims) neg_data_statesneg_data np.random.random(num_cases, num_dims) = 1 #forward one more time neg_data_states = neg_data_states.transpose() nh = self.forward(neg_data_states) nh_states = np.zeros(num_cases, self.n_hidden) nh_statesnh np.random.random(num_cases, self.n_hidden) = 1 #update weight and biases dW = np.dot(data, ph) - np.dot(neg_data_states, nh) dc = np.sum(data, axis = 1) - np.sum(neg_data_states, axis = 1) db = np.sum(ph, axis = 0) - np.sum(nh, axis = 0) Winc = momentum * Winc + eta * (dW / num_cases - self.penalty * W) binc = momentum * binc + eta * (db / num_cases); cinc = momentum * cinc + eta * (dc / num_cases); W = W + Winc b = b + binc c = c + cinc self.w = W self.h_bais = b self.v_bias = c if(epoch avgstart): Wavg -= (1.0 / t) * (Wavg - W) cavg -= (1.0 / t) * (cavg - c) bavg -= (1.0 / t) * (bavg - b) t += 1 else: Wavg = W bavg = b cavg = c #accumulate reconstruction error err = norm(data - neg_data.transpose() err_sum += err print epoch, err_sum errors.append(err_sum) self.errors = errors self.hiden_value = self.forward(self.x) h_row, h_col = self.hiden_value.shape hiden_states = np.zeros(h_row, h_col) hiden_statesself.hiden_value np.random.random(h_row, h_col) = 1 self.rebuild_value = self.backward(hiden_states) self.w = Wavg self.h_bais = b self.v_bias = c def visualize(self, X): D, N = X.shape s = int(np.sqrt(D) if s = int(np.floor(s): num = int(np.ceil(np.sqrt(N) a = np.zeros(num*s + num + 1, num * s + num + 1) - 1.0 x = 0 y = 0 for i in range(0, N): z = X:,i z = z.reshape(s,s,order=F) z = z.transpose() ax*s+1+x - 1:x*s+s+x , y*s+1+y - 1:y*s+s+y = z x = x + 1 if(x = num): x = 0 y = y + 1 d = True else: a = X return a def readData(path): data = for line in open(path, r): ele = line.split( ) tmp = for e in ele: if e != : tmp.append(float(e.strip( ) data.append(tmp) return data if _name_ = _main_: data = readData(data.txt) data = np.array(data) data = data.transpose() rbm = Rbm(784, 100,max_epoch = 50) rbm.rbmBB(data) a = rbm.visualize(data) fig = plt.figure(1) ax = fig.add_subplot(111) ax.imshow(a) plt.title(original data) rebuild_value = rbm.rebuild_value.transpose() b = rbm.visualize(rebuild_value) fig = plt.figure(2) ax = fig.add_subplot(111) ax.imshow(b) plt.title(rebuild data) hidden_value = rbm.hiden_value.transpose() c = rbm.visualize(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋翻新维修协议书
- 房屋装修技术协议书
- 房屋赠与手续协议书
- 房屋违约金合同范本
- 房屋面防水合同范本
- 房源补偿协议书范本
- 房租拆除安全协议书
- 房租转让物品协议书
- 手写洁注资合同范本
- 手术妊娠免责协议书
- 四川省成都市蓉城名校联盟2025-2026学年高三上学期11月考试英语试卷
- 推土机司机岗前基础常识考核试卷含答案
- 2025下半年黑龙江大庆市杜尔伯特蒙古族自治县事业单位人才引进33人备考题库附答案
- 2025江苏连云港灌云大伊山景区旅游开发有限公司招聘工作人员10人笔试历年常考点试题专练附带答案详解试卷3套
- 深海鱼油的会销课件讲解
- 2025下半年海南万宁市事业单位招聘工作人员146人(第1号)考试笔试模拟试题及答案解析
- 模特行业发展趋势及个人发展方向
- 2025国元农业保险股份有限公司管培生校园招聘25人笔试历年常考点试题专练附带答案详解2套试卷
- (16)普通高中体育与健康课程标准日常修订版(2017年版2025年修订)
- 2025至2030电解锰行业项目调研及市场前景预测评估报告
- 统编版(2024)八年级上册语文期末复习:各单元知识点 讲义
评论
0/150
提交评论