高一数学 3.2.2 函数模型的应用实例课件 新人教A版必修1.ppt_第1页
高一数学 3.2.2 函数模型的应用实例课件 新人教A版必修1.ppt_第2页
高一数学 3.2.2 函数模型的应用实例课件 新人教A版必修1.ppt_第3页
高一数学 3.2.2 函数模型的应用实例课件 新人教A版必修1.ppt_第4页
高一数学 3.2.2 函数模型的应用实例课件 新人教A版必修1.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学点一 学点二 学点三 2 用已知函数模型解决实际问题的基本步骤 第一步 第二步 根据所给模型 列出函数关系式 第三步 第四步 再将所得结论转译成具体问题的解答 1 我们目前已学习了以下几种函数 一次函数 二次函数 指数函数 对数函数 幂函数 试在横线上依次填出其解析式 y kx b k 0 y ax2 bx c a 0 y ax a 0 且a 1 y logax a 0 且a 1 y x 为常数 审清题意 设立变量 利用函数关系求解 3 在处理曲线拟合与预测的问题时 通常需要以下几个步骤 1 能够根据原始数据 表格 绘出散点图 2 通过考查散点图 画出 最贴近 的曲线 即 3 根据所学函数知识 求出拟合曲线的 4 利用函数关系 根据条件对所给问题进行预测和控制 以便为决策和管理提供依据 拟合曲线 函数解析式 学点一函数图象的应用 向高为h的水瓶中注水 注满为止 如果注水量v与水深h的函数关系的图象如图所示 那么水瓶的形状是 分析 由函数图象可知函数的性质 如单调性等 考查图象常用特殊点验证 b 解析 解法一 由图知注水量v随着高度的增加 增加的越来越慢 瓶子应越来越细 故应选b 解法二 中点判断法 取h 如图所示三点a b c 显vb vc 即水高度达到瓶子一半时 水的体积超过瓶子的一半 显然应下粗上细 故应选b 评析 抓住函数图象的变化趋势 定性地研究两个变量之间的关系 是近年来常见应用题的一种题型 其出发点是函数的图象 处理问题的基本方法就是数形结合 一天 亮亮发烧了 早晨他烧得很厉害 吃过药后感觉好多了 中午时亮亮的体温基本正常 但是下午他的体温又开始上升 直到半夜亮亮才感觉身上不那么发烫了 图中能基本上反映出亮亮这一天 0时 24时 体温的变化情况的是 设t f x 显然在t 0 6 6 12 12 18 18 24 时 f t 依次为增 减 增 减函数 故应选c c 某医药研究所开发一种新药 据监测 如果成人按规定的剂量服用 服药后每毫升血液中的含药量y 微克 与服药后的时间t 小时 之间近似满足如图所示的曲线 其中oa是线段 曲线abc是函数y k at t 1 a 0 且k a是常数 的图象 1 写出服药后y关于t的函数关系式 学点二已知函数模型解实际问题 2 据测定 每毫升血液中含药量不少于2微克时治疗疾病有效 假若某病人第一次服药为早上6 00 为了保持疗效 第二次服药最迟应该在当天几点钟 3 若按 2 中的最迟时间第二次服药 则服药后再过3小时 该病人每毫升血液中含药量为多少微克 精确到0 1微克 分析 待定系数法求函数解析式是一种求函数解析式的基本题型 2 设第一次服药后最迟过t小时服第二次药 依题意得t 1 2 解得t 5 因此 第二次服药最迟应在第一次服药5小时后 即上午11时服药 3 第二次服药后3小时 每毫升血液中含第一次所服的药的药量为y1 微克 含第二次所服的药的药量为y2 4微克 y1 y2 4 4 7微克 答 该病人每毫升血液中含药约为4 7微克 评析 这类题目主要有两类 一是已知函数解析式形式 只需求待定系数 较容易 二是根据题目所给条件 能够列出两个变量x y之间的关系式 从而得出函数解析式 这类题目的关键是审清题意 弄清常量 变量等诸元素之间的关系 在前几年的高考题目中 占有较大比例 物体在常温下的温度变化可以用牛顿冷却规律来描述 设物体的初始温度是t0 经过一定时间t后的温度是t 则t ta t0 ta 其中ta表示环境温度 h称为半衰期 现有一杯用88 热水冲的速溶咖啡 放在24 的房间中 如果咖啡降温到40 需要20min 那么降温到35 时 需要多长时间 设半衰期为h 由题意知40 24 88 24 即 解之得h 10 故原式可化简为t 24 88 24 当t 35时 代入上式 得35 24 88 24 即 两边取对数 用计算器求得t 25 因此 约需要25min可降温到35 学点三拟合函数 某工厂今年1月 2月 3月生产某种产品的数量分别为1万件 1 2万件 1 3万件 为了估计以后每个月的产量 以这三个月的产品数量为依据 用一个函数模拟该产品的月产量y与月份x的关系 模拟函数可以选用二次函数或函数y a bx c 其中a b c为常数 已知4月份该产品的产量为1 37万件 问 用以上哪个函数作为模拟函数较好 并说明理由 分析 此题想判断哪个函数最好 可以先通过前三个月给出的条件 确定两种模拟函数中参数的值 再由4月份的产量 比较哪个函数值更接近1 37万 解析 设y1 f x px2 qx r p 0 则f 1 p q r 1f 2 4p 2q r 1 2f 3 9p 3q r 1 3 解得p 0 05 q 0 35 r 0 7 f 4 0 05 42 0 35 4 0 7 1 3 再设y2 g x abx c a 0 b 0 b 1 则g 1 ab c 1g 2 ab2 c 1 2g 3 ab3 c 1 3 解得a 0 8 b 0 5 c 1 4 g 4 0 8 0 54 1 4 1 35 经比较可知用y 0 8 0 5 x 1 4作为模拟函数较好 评析 问题中给出函数关系式 且关系式中带有需确定的参数 这些参数需要根据问题的内容或性质来确定 然后再通过运用函数使问题本身获解 18世纪70年代 德国科学家提丢斯发现金星 地球 火星 木星 土星离太阳的平均 天文单位 如下表 他研究行星排列规律后预测在火星与木星之间应该有一颗大的行星 后来果然发现了谷神星 但不算大行星 它可能是一颗大行星爆炸后的产物 请你推测谷神星的位置 在土星外面是什么星 它与太阳的距离大约是多少 由数值对应表作散点图如图 由图采用指数型函数作模型 设f x a bx c 代入 1 0 7 2 1 0 3 1 6 得ab c 0 7 ab2 c 1 0 ab3 c 1 6 得b 2 代入 2a c 0 7a 4a c 1 0 c 解得 得 f x 2x f 5 5 2 f 6 10 符合对应表值 f 4 2 8 f 7 19 6 所以谷神星大约在离太阳2 8天文单位处 在土星外面是天王星 它与太阳的距离大约是19 6天文单位 1 怎样理解 数学建模 和实际问题的关系 一般来说 对问题进行修改和简化 形成一种比较精确和简洁的表述 这时可称之为 实际模型 它和 实际原形 不同 因为它被简化了 不是实际问题所有方面都得到了体现 而是在得到一个 实际模型 之后 再用数学符号和表达式来代替实际问题中的变量和关系 得到的结果是一个 数学模型 在 数学建模 中要把握好下列几个问题 1 理解问题 阅读理解 读懂文字叙述 认真审题 理解实际背景 弄清楚问题的实际背景和意义 设法用数学语言来描述问题 2 数学建模 把握新信息 勇于探索 善于联想 灵活化归 根据题意建立变量或参数间的数学关系 实现实际问题数学化 引进数学符号 构建数学模型 常用的数学模型有方程 不等式 函数 2 怎样才能搞好 数学建模 3 求解模型 以所学的数学性质为工具对建立的数学模型进行求解 4 检验模型 将所求的结果代回模型中检验 对模拟的结果与实际情形比较 以确定模型的有效性 如果不满意 要考虑重新建模 5 评价与应用 如果模型与实际情形比较吻合 要对计算的结果作出解释并给出其实际意义 最后对所建立的模型给出运用范围 如果模型与实际问题有较大出入 则要对模型改进 并重复上述步骤 3 数学建模 中要注意什么问题 1 有的应用题文字叙述冗长 或者选择的知识背景较为陌生 处理时 要注意认真 耐心地阅读和理解题意 2 解决函数应用题时要注意用变化的观点分析和探求具体问题中的数量关系 寻找已知量与未知量之间的内在联系 然后将这些内在联系与数学知识联想 建立函数关系式或列出方程 利用函数性质或方程观点来求解 则可使应用题化生为熟 尽快得到解决 1 如果实际问题中的规律很难用一个统一的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论