




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第八章平面解析几何 第一节直线的倾斜角与斜率 直线方程 抓基础 明考向 提能力 教你一招 我来演练 备考方向要明了 一 直线的倾斜角与斜率1 直线的倾斜角 1 定义 x轴与直线的方向所成的角叫做这条直线的倾斜角 当直线与x轴平行或重合时 规定它的倾斜角为 2 倾斜角的范围为 正向 向上 0 0 正切值 tan 二 直线方程的形式及适用条件 y y0 k x x0 y kx b 垂直于x轴 垂直于x轴 垂直于坐 标轴 垂直于 坐标轴 过 原点 ax by c 0 a b不全为0 答案 b 答案 a 3 直线l ax y 2 a 0在x轴和y轴上的截距相等 则a的值是 a 1b 1c 2或 1d 2或1 答案 d 4 教材习题改编 过点p 2 m q m 4 的直线的斜率等于1 则m的值为 答案 1 5 教材习题改编 过点m 3 4 且在两坐标轴上的截距互为相反数的直线方程为 1 直线的倾斜角与斜率的关系斜率k是一个实数 当倾斜角 90 时 k tan 直线都有斜倾角 但并不是每条直线都存在斜率 倾斜角为90 的直线无斜率 2 直线方程的点斜式 两点式 斜截式 截距式等都是直线方程的特殊形式 其中点斜式是最基本的 其他形式的方程皆可由它推导 直线方程的特殊形式都具有明显的几何意义 但又都有一些特定的限制条件 如点斜式方程的使用要求直线存在斜率 截距式方程的使用要求横纵截距都存在且均不为零 两点式方程的使用要求直线不与坐标轴垂直 因此应用时要注意它们各自适用的范围 以避免漏解 答案 b 本例的条件变为 若过点p 1 a 1 a 与q 3 2a 的直线的倾斜角为钝角 则实数a的取值范围是 答案 2 1 巧练模拟 课堂突破保分题 分分必保 答案 b 冲关锦囊 1 求倾斜角的取值范围的一般步骤 1 求出斜率k tan 的取值范围 2 利用三角函数的单调性 借助图像或单位圆数形结合 确定倾斜角 的取值范围 2 求倾斜角时要注意斜率是否存在 精析考题 例2 2011 龙岩期末 已知 abc中 a 1 4 b 6 6 c 2 0 求 1 abc中平行于bc边的中位线所在直线的一般式方程和截距式方程 2 bc边的中线所在直线的一般式方程 并化为截距式方程 答案 a 3 2012 温州模拟 已知a 1 1 b 3 1 c 1 3 则 abc的bc边上的高所在直线方程为 a x y 0b x y 2 0c x y 2 0d x y 0 答案 b 答案 a 求直线方程的方法主要有以下两种 1 直接法 根据已知条件 选择适当的直线方程形式 直接写出直线方程 2 待定系数法 先设出直线方程 再根据已知条件求出待定系数 最后代入求出直线方程 冲关锦囊 精析考题 例3 已知直线l kx y 1 2k 0 k r 1 证明 直线l过定点 2 若直线l不经过第四象限 求k的取值范围 3 若直线l交x轴负半轴于点a 交y轴正半轴于点b o为坐标原点 设 aob的面积为s 求s的最小值及此时直线l的方程 自主解答 1 证明 法一 直线l的方程可化为y k x 2 1 故无论k取何值 直线l总过定点 2 1 法二 设直线过定点 x0 y0 则kx0 y0 1 2k 0对任意k r恒成立 即 x0 2 k y0 1 0恒成立 所以x0 2 0 y0 1 0 解得x0 2 y0 1 故直线l总过定点 2 1 巧练模拟 课堂突破保分题 分分必保 5 2012 东北三校联考 已知直线l过点m 2 1 且分别与x轴 y轴的正半轴交于a b两点 o为原点 1 当 aob面积最小时 直线l的方程是 2 当 ma mb 取得最小值时 直线l的方程是 答案 1 x 2y 4 0 2 x y 3 0 冲关锦囊 1 解决直线方程的综合问题时 除灵活选择方程的形式外 还要注意题目中的隐含条件 2 与直线方程有关的最值或范围问题可以数形结合也可从函数角度考虑构建目标函数进而转化求最值 数学思想数形结合思想在直线中的应用 考题范例 2011 温州第一次适应性测试 当直线y kx与曲线y x x 2 有3个公共点时 实数k的取值范围是 a 0 1 b 0 1 c 1 d 1 巧妙运用 依题意得 当x2时 y x x 2 2 在直角坐标系中画出该函数的图像 如图 将x轴绕着原点沿逆时针方向旋转 当旋转到直线恰好经过点 2 2 的过程中 相应的直线 不包括过点 2 2 的直线 与该函数的图像都有三个不同的交点 再进一步旋转 相应的直线与该函数的图像都不再有三个不同的交点 因此满足题意的k的取值范围是 0 1 答案 a 题后悟道 高手点拨 本题若直接入手
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全生产事故案例考试题含答案集
- 2025年安全员C证复审核心题库题
- 2025年会计类司法鉴定人助理笔试模拟题库
- 2025年安全管理面试题库及答案解析大全
- 2025年人力资源管理师职业能力认证考试试题及答案解析
- 2025年旅游商品经营管理师资格认证试题及答案解析
- 2025年农业生态修复技术项目规划技术员招聘面试题与答案
- 2025年宠物行业初级管理面试题
- 2025年计算机网络工程师资格认证考试试题及答案解析
- 2025年设备使用安全知识竞赛题库
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 支部纪检委员课件
- 从+“心”+出发遇见更好的自己-开学第一课暨心理健康教育主题班会-2025-2026学年高中主题班会
- 枣庄学院《图学基础与计算机绘图》2024-2025学年第一学期期末试卷
- 2025版仓储库房租赁合同范本(含合同生效条件)
- 2025至2030年中国纳米抛光浆料行业发展监测及发展趋势预测报告
- 养老护理员培训班课件
- 2025-2030城市矿产开发利用政策支持与商业模式创新报告
- 隔爆水棚替换自动隔爆装置方案及安全技术措施
- 医学减重管理体系
评论
0/150
提交评论