《蒙特卡罗随机方法》PPT课件.ppt_第1页
《蒙特卡罗随机方法》PPT课件.ppt_第2页
《蒙特卡罗随机方法》PPT课件.ppt_第3页
《蒙特卡罗随机方法》PPT课件.ppt_第4页
《蒙特卡罗随机方法》PPT课件.ppt_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒙特卡罗模拟方法 报告人 杨林吴颖科目 项目风险管理任课教师 尹志军 蒙特卡罗模拟方法 一 蒙特卡罗方法概述二 蒙特卡罗方法模型三 蒙特卡罗方法的优缺点及其适用范围四 相关案例分析及软件操作五 问题及相关答案 MonteCarlo方法的发展历史 早在17世纪 人们就知道用事件发生的 频率 来决定事件的 概率 从方法特征的角度来说可以一直追溯到18世纪后半叶的蒲丰 Buffon 随机投针试验 即著名的蒲丰问题 1707 1788 1777年 古稀之年的蒲丰在家中请来好些客人玩投针游戏 针长是线距之半 他事先没有给客人讲与 有关的事 客人们虽然不知道主人的用意 但是都参加了游戏 他们共投针2212次 其中704次相交 蒲丰说 2212 704 3 142 这就是 值 这着实让人们惊喜不已 例 蒲丰氏问题 设针投到地面上的位置可以用一组参数 x 来描述 x为针中心的坐标 为针与平行线的夹角 如图所示 任意投针 就是意味着x与 都是任意取的 但x的范围限于 0 a 夹角 的范围限于 0 在此情况下 针与平行线相交的数学条件是 针在平行线间的位置 一些人进行了实验 其结果列于下表 20世纪四十年代 由于电子计算机的出现 利用电子计算机可以实现大量的随机抽样的试验 使得用随机试验方法解决实际问题才有了可能 其中作为当时的代表性工作便是在第二次世界大战期间 为解决原子弹研制工作中 裂变物质的中子随机扩散问题 美国数学家冯 诺伊曼 VonNeumann 和乌拉姆 Ulam 等提出蒙特卡罗模拟方法 由于当时工作是保密的 就给这种方法起了一个代号叫蒙特卡罗 即摩纳哥的一个赌城的名字 用赌城的名字作为随机模拟的名称 既反映了该方法的部分内涵 又易记忆 因而很快就得到人们的普遍接受 蒙特卡罗方法的基本思想 蒙特卡罗方法又称计算机随机模拟方法 它是以概率统计理论为基础的一种方法 由蒲丰试验可以看出 当所求问题的解是某个事件的概率 或者是某个随机变量的数学期望 或者是与概率 数学期望有关的量时 通过某种试验的方法 得出该事件发生的频率 或者该随机变量若干个具体观察值的算术平均值 通过它得到问题的解 这就是蒙特卡罗方法的基本思想 因此 可以通俗地说 蒙特卡罗方法是用随机试验的方法计算积分 即将所要计算的积分看作服从某种分布密度函数f r 的随机变量 r 的数学期望通过某种试验 得到 个观察值r1 r2 rN 用概率语言来说 从分布密度函数f r 中抽取 个子样r1 r2 rN 将相应的 个随机变量的值g r1 g r2 g rN 的算术平均值作为积分的估计值 近似值 计算机模拟试验过程 计算机模拟试验过程 就是将试验过程 如投针问题 化为数学问题 在计算机上实现 模拟程序 l 1 d 2 m 0 n 10000fork 1 n x unifrnd 0 d 2 y unifrnd 0 pi ifx 0 5 1 sin y m m 1elseendendp m npi m 1 p 建立概率统计模型 收集模型中风险变量的数据 确定风险因数的分布函数 根据风险分析的精度要求 确定模拟次数 样本值 统计分析 估计均值 标准差 根据随机数在各风险变量的概率分布中随机抽样 代入第一步中建立的数学模型 建立对随机变量的抽样方法 产生随机数 例子 某投资项目每年所得盈利额A由投资额P 劳动生产率L 和原料及能源价格Q三个因素 收集P L Q数据 确定分布函数 模拟次数N 根据分布函数 产生随机数 抽取P L Q一组随机数 带入模型 产生A值 统计分析 估计均值 标准差 根据历史数据 预测未来 模型建立的两点说明 MonteCarlo方法在求解一个问题是 总是需要根据问题的要求构造一个用于求解的概率统计模型 常见的模型把问题的解化为一个随机变量的某个参数的估计问题 要估计的参数通常设定为的数学期望 亦平均值 即 按统计学惯例 可用的样本的平均值来估计 即 这时就必须采用主观概率 即由专家做出主观估计得到的概率 另一方面 在对估测目标的资料与数据不足的情况下 不可能得知风险变量的真实分布时 根据当时或以前所收集到的类似信息和历史资料 通过专家分析或利用德尔菲法还是能够比较准确地估计上述各风险因素并用各种概率分布进行描述的 Crystalball软件对各种概率分布进行拟合以选取最合适的分布 收集模型中风险变量的数据 确定风险因数的分布函数 抽样次数与结果精度 解的均值与方差的计算公式 是随机变量X的方差 而称为估计量方差 通常蒙特卡罗模拟中的样本量n很大 由统计学的中心极限定理知渐进正态分布 即 从而 式中 位小概率 1 称为置信度 是标准正态分布中与 对应的临界值 可有统计分布表查得 由 得统计学上称为与置信水平 对应的置信区间 我们就把记做是误差 得到人们习惯的结果误差表示 对于指定的误差 模拟所需抽样次数n可由导出 随机数 随机数的定义用MonteCarlo方法模拟某过程时 需要产生各种概率分布的随机变量 最简单 最基本 最重要的随机变量是在 0 1 上均匀分布的随机变量 由该分布抽取的简单子样称为随机数序列 其中每一个体称为随机数 随机数属于一种特殊的由已知分布的随机抽样问题 随机数是随机抽样的基本工具 0 1 上均匀分布 单位均匀分布 其分布密度函数为 分布函数为 特征 独立性 均匀性 随机数的产生方法 随机数表物理方法计算机方法 随机数表 随机数表是由0 1 2 9十个数字组成 每个数字以0 1的概率出现 数字之间相互独立 方法 如果要得到n位有效数字的随机数 只需将表中每n个相邻的随机数字合并在一起 且在最高位的前边加上小数点即可 例如 某随机数表第一行数字为7634258910 要想得到三位有效数字的随机数依次为 0 763 0 425 0 891 物理方法 基本原理 利用某些物理现象 在计算机上增加些特殊设备 可以在计算机上直接产生随机数 缺点 无法重复实现费用昂贵 计算机方法 在计算机上产生随机数最实用 最常见的方法是数学方法 即用如下递推公式 产生随机数序列 对于给定的初始值 确定 n 1 2 存在的问题 1 不满足相互独立的要求2 不可避免的出现重复问题所以成为伪随机数问题的解决 1 选取好的递推公式2 不是本质问题 产生伪随机数的乘同余方法 乘同余方法是由Lehmer在1951年提出来的 它的一般形式是 对于任一初始值x1 伪随机数序列由下面递推公式确定 为乘子 为种子 初值 M成为模数 上式表示是被M整除后的余数 叫做与对模M的同余 利用乘同余法产生伪随机数的步骤如下 1 取种子 乘子 和模数M 2 由式 1 获得一系列 3 由式 2 得到一系列 这就是所要产生的伪随机数的序列 乘同余方法在计算机上的使用 为了便于在计算机上使用 通常取 2s其中s为计算机中二进制数的最大可能有效位数x1 奇数a 52k 1其中k为使52k 1在计算机上所能容纳的最大整数 即a为计算机上所能容纳的5的最大奇次幂 一般地 s 32时 a 513 s 48 a 515等 伪随机数序列的最大容量 M 2s 2 乘同余方法是使用的最多 最广的方法 在计算机上被广泛地使用 用MATLAB产生随机数 语言 连续均匀分布的函数表达式为R unifrnd A B 演示 forn 1 100 k unifrnd 0 1 end 随机抽样及其特点 由巳知分布的随机抽样指的是由己知分布的总体中抽取简单子样 随机数序列是由单位均匀分布的总体中抽取的简单子样 属于一种特殊的由已知分布的随机抽样问题 下表所叙述的由任意已知分布中抽取简单子样 是在假设随机数为已知量的前提下 使用严格的数学方法产生的 直接抽样方法 对于任意给定的分布函数F x 直接抽样方法如下 其中 1 2 N为随机数序列 为方便起见 将上式简化为 若不加特殊说明 今后将总用这种类似的简化形式表示 总表示随机数 离散型分布的直接抽样方法 对于任意离散型分布 其中x1 x2 为离散型分布函数的跳跃点 P1 P2 为相应的概率 根据前述直接抽样法 有离散型分布的直接抽样方法如下 该结果表明 为了实现由任意离散型分布的随机抽样 直接抽样方法是非常理想的 例1 二项分布的抽样 二项分布为离散型分布 其概率函数为 其中 P为概率 对该分布的直接抽样方法如下 例2 掷骰子点数的抽样 掷骰子点数X n的概率为 选取随机数 如则在等概率的情况下 可使用如下更简单的方法 其中 表示取整数 连续型分布的直接抽样方法 对于连续型分布 如果分布函数F x 的反函数F 1 x 存在 则直接抽样方法是 例3 在 a b 上均匀分布的抽样 在 a b 上均匀分布的分布函数为 则 由任意已知分布中抽取简单子样的方法还包括 挑选抽样方法 复合抽样方法 复合挑选抽样方法 替换抽样方法 圆内均匀分布抽样要用到挑选抽样方法 指数分布函数抽样要用到复合抽样方法 正态分布的抽样和 分布的抽样要用到替换抽样方法等 每种方法各有其优缺点和使用范围 常用概率分布的抽样公式 三角分布三角形概率分布是一种应用较广连续型概率分布 它是一种3点估计 特别适用于对那些风险变量缺乏历史统计资料和数据 但可以经过咨询专家意见 得出各参数变量的最乐观值 a 最可能出现的中间值 b 以及最悲观值 m 这3个估计值 a b m 构成一个三角形分布 实际上 Matlab软件为我们提供了一种简单快捷的产生各种常用分布随机数的方法 其功能和特点 1 界面友好 编程效率高 2 功能强大 可扩展性强 3 强大的数值计算功能和符号计算功能 4 图形功能灵活方便 Matlab常用的随机数产生函数 有了这些随机产生函数 就可以直接产生满足分布F x 的随机数了 而无需通过先求出连续均匀分布的随机数 再通过抽样公式得出所求分布函数的随机抽样 演示 forn 1 100 k betarnd 0 1 100 end 蒙特卡罗方法的特点 优点 能够比较逼真地描述具有随机性质的事物的特点及物理实验过程 受几何条件限制小 收敛速度与问题的维数无关 误差容易确定 程序结构简单 易于实现 缺点 收敛速度慢 误差具有概率性 进行模拟的前提是各输入变量是相互独立的 能够比较逼真地描述具有随机性质的事物的特点及物理实验过程 从这个意义上讲 蒙特卡罗方法可以部分代替物理实验 甚至可以得到物理实验难以得到的结果 用蒙特卡罗方法解决实际问题 可以直接从实际问题本身出发 而不从方程或数学表达式出发 它有直观 形象的特点 受几何条件限制小 在计算s维空间中的任一区域Ds上的积分 无论区域Ds的形状多么特殊 只要能给出描述Ds的几何特征的条件 就可以从Ds中均匀产生N个点 收敛速度与问题的维数无关 由误差定义可知 在给定置信水平情况下 蒙特卡罗方法的收敛速度为 与问题本身的维数无关 维数的变化 只引起抽样时间及估计量计算时间的变化 不影响误差 也就是说 使用蒙特卡罗方法时 抽取的子样总数N与维数s无关 维数的增加 除了增加相应的计算量外 不影响问题的误差 这一特点 决定了蒙特卡罗方法对多维问题的适应性 程序结构简单 易于实现 在计算机上进行蒙特卡罗方法计算时 程序结构简单 分块性强 易于实现 收敛速度慢 如前所述 蒙特卡罗方法的收敛为 一般不容易得到精确度较高的近似结果 对于维数少 三维以下 的问题 不如其他方法好 误差具有概率性 由于蒙特卡罗方法的误差是在一定置信水平下估计的 所以它的误差具有概率性 而不是一般意义下的误差 蒙特卡罗方法的主要应用范围 蒙特卡罗方法所特有的优点 使得它的应用范围越来越广 它的主要应用范围包括 粒子输运问题 统计物理 典型数学问题 真空技术 激光技术以及医学 生物 探矿等方面 特别适用于在计算机上对大型项目 新产品项目和其他含有大量不确定因素的复杂决策系统进行风险模拟分析 随着科学技术的发展 其应用范围将更加广泛 第五节项目风险案例分析 现以成都某房地产开发公司对一综合开发用地进行投资开发为例 用基于蒙特卡罗模拟方法为原理的EXCEL插件 CrystalBall工具对该开发项目进行风险决策分析 一 项目概况和基本数据的确定 该项目位于成都市锦江区 占地面积47亩 该房地产公司根据市场状况调查 结合该地块的规划说明 在做了充分的方案设计之后 确定了两套主要的投资方案 甲方案 该地块主要以小高层电梯住宅开发为主 辅以车库和部分商业配套设施 开发期共三年 甲方案预测出的的主要经济技术指标见表5 1 表5 1甲方案的主要经济技术指标 乙方案 将该地块开发为商业类地产为主 外设露天停车场 配以部分小户型电梯公寓 开发期仍为三年 乙方案预测出的的主要经济技术指标见表5 2 表5 2乙方案的主要经济技术指标 根据该表5 1第五项 我们可以得出甲方案的财务净现值NPV 915万元 同样根据该表5 2第五项 我们可以得出乙方案的财务净现值NPV 2550万元 通过对两种方案动态财务指标的比较 我们可以很明确的断定采用乙方案将是开发商最佳的选择 但不容忽略的一点是 以商业类开发为主的乙方案 在销售期间 销售面积和销售价格具有较大的不确定性 而以住宅类开发为主的甲方案在对未来的销售面积和销售价格方面将有更大的把握度 仅从这点上我们就可以判断乙方案的风险大于甲方案 为了做出精准的判断 需要在此基础之上进行更精准的风险分析 二 采用蒙特卡罗方法进行风险决策分析 一 识别项目风险在投资开发项目时 实际情况千差万别 重要的风险变量也各不相同 这就需要分析人员根据项目的具体情况 运用适当的风险辨识的方法从影响投资的众多因素中找出关键的风险变量 本案例采用 德尔菲法 确定影响该项目的7个主要风险变量 住宅销售收入 P1 S1 商业销售收入 P2 S2 土地费用 K1 前期费用 K2 开发建设费用 K3 营销费用 K4 其他费用 K5 二 确定每个风险变量的概率分布同样采用 德尔菲法 估计出以上7个风险变量概率分布和其分布函数中的具体参数 如下表所示 表5 3甲方案风险变量概率分布 表5 4乙方案风险变量概率分布 三 定义模型并确定模拟次数 定义财务净现值NPV的模型为 其中 i为基准折现率 n为项目的生命周期 为了确保模拟结果与实际分布最大限度的接近一致 我们取95 的置信度 拟进行10000次的模拟实验 进行10000次的模拟 得出甲 乙方案的NPV的统计数据 表5 5甲方案的评价指标统计值 表5 6乙方案的评价指标统计值 四 分析决策1 通过表5 5甲方案的财务净现值统计值和表5 6乙方案的财务净现值统计值 我们可以出 两个方案的NPV期望值均大于零 但甲方案的值大于乙方案 2 进一步对各方案的风险度进行比较 甲方案NPV的标准差为1052 27 而乙的标准差为2157 44 说明乙方案的偏离程度较大 并且甲方案NPV介于 min 1833 45 max 4448 76 之间 乙方案NPV在 min 7334 47 max 5529 92 之间 再次说明乙方案NPV的风险度大于甲方案 3 利用EXCEAL可以很容易评价指标具体的概率分布 如表5 7 表5 7甲乙方案风险概率分布 因此 应该采用甲方案 4 总结通过上面的分析 利用蒙特卡罗方法模拟分析得出的结果与使用传统的分析技术得出的结果相比 不仅能够分析风险因素对整个项目预期收益的影响程度 而且还能科学地估计出风险发生的概率大小 并且这样的估计是建立在充分考虑了多个风险变量共同影响 共同作用的基础之上 能够为风险决策者提供有实用价值的决策依据 因此有助于我们对多套投资方案进行筛选比较 CrystalBall软件简介 CrystalBall软件是由美国Decisioneering公司开发的 为Excel电子表格提供的功能强大的加载宏 它充分利用微软视窗环境 提供了含有易学易用的图形包的高级模拟技术的独特组合 该软件包主要有计算机仿真模拟功能 时间序列数据生成预测和OptQuest功能 使其可以在运行结果中自动搜索仿真模型的最优解 CrystalBall软件的使用步骤 定义随机的输入单元格 加载CrystalBall到Excel中 并且建立一个工作表 将投资预测的相关变量输入电子表格中 定义随机单元格的概率分布 利用软件的DefineAssumption功能为相应变量设定概率分布 利用DefineDecision定义决策变量 定义预测的输出单元格 利用DefineForecast功能定义输出变量的单元格 设定运行参数 在RunPreference功能中定义模拟次数 敏感度分析等参数 运行仿真 点击Run进行模拟运算 分析模拟结果 问题 1 蒙特卡罗方法的基本思想是什么 2 用蒙特卡罗模型解决实际问题的基本步骤是什么 3 蒙特卡罗方法的优缺点各有哪些 4 由蒙特卡罗方法的误差公式我们可以推断出其有那些优缺点 5蒙特卡罗模拟与随机抽样统计分析有什么区别 Theanswer 1 当所求问题的解是某个事件的概率 或者是某个随机变量的数学期望 或者是与概率 数学期望有关的量时 通过某种试验的方法 得出该事件发生的频率 或者该随机变量若干个具体观察值的算术平均值 通过它得到问题的解 这就是蒙特卡罗方法的基本思想 2 1 建立数学模型 2 收集模型中风险变量的数据 确定风险因数的分布函数 3 确定模拟次数 产生随机数 4 由产生的随机数在各风险变量的分布函数中随机抽样 带入模型求出目标变量的一个样本值 5 重复第4步N次 产生N个样本值 对得到的N个样本值进行统计分析 3 优点 能够比较逼真地描述具有随机性质的事物的特点及物理实验过程 受几何条件限制小 收敛速度与问题的维数无关 误差容易确定 程序结构简单 易于实现 缺点 收敛速度慢 误差具有概率性 进行模拟的前提是各输入变量是相互独立的 4 通常 蒙特卡罗方法的误差 定义为上式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论