高中数学第三章概率3.2.1古典概型课后提升作业含解析.docx_第1页
高中数学第三章概率3.2.1古典概型课后提升作业含解析.docx_第2页
高中数学第三章概率3.2.1古典概型课后提升作业含解析.docx_第3页
高中数学第三章概率3.2.1古典概型课后提升作业含解析.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

古典概型(30分钟60分)一、选择题(每小题5分,共40分)1.一个家庭有两个小孩,则所有可能的基本事件有()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)【解析】选C.两个孩子有先后出生之分.【延伸探究】一个家庭中有两个小孩,这两个小孩都为女孩的概率为()A.13B.12C.14D.23【解析】选C.两个小孩共有四种情况:(男,女),(女,男),(女,女),(男,男),基本事件总数为4,两个小孩都为女孩的概率为14.2.(2016石家庄高一检测)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.16【解析】选B.从1,2,3,4中任取2个不同的数有以下六种情况:1,2,1,3, 1,4,2,3,2,4,3,4,满足取出的2个数之差的绝对值为2的有1,3,2,4,故所求概率是26=13.3.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.318B.418C.518D.618【解析】选C.正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件,两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于518.4.(2016北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.925【解析】选B.把5名同学依次编号为甲乙丙丁戊,基本事件空间=甲乙,甲丙,甲丁,甲戊,乙丙,乙丁,乙戊,丙丁,丙戊,丁戊,包含基本事件总数n=10.设A表示事件“甲被选中”,则A=甲乙,甲丙,甲丁,甲戊,包含基本事件数m=4.所以概率为P=410=25.【补偿训练】从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为()A.15B.25C.35D.45【解析】选B.因为从字母a,b,c,d,e中任取两个不同字母,不考虑先后顺序共有10种取法,分别是(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),其中取到字母a的有4种:(a,b),(a,c),(a,d),(a,e),所求概率为P=410=25.【误区警示】在计算基本事件的总数时,由于没有弄清题意,分不清“有序”和“无序”,因而常常出现“重算”或“漏算”的错误,突破这一思维障碍的有效方法是交换次序,看是否对结果造成影响.有影响就是有序,无影响即无序.5.一袋中装有大小相同的八个球,编号分别为1,2,3,4,5,6,7,8,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于14”为事件A,则P(A)等于()A.132B.164C.332D.364【解析】选C.事件A包括(6,8),(7,7),(7,8),(8,6),(8,7),(8,8)这6个基本事件,由于是有放回地取,基本事件总数为88=64(个),所以P(A)=664=332.6.(2016阜阳高一检测)设a是抛掷一枚骰子得到的点数,则方程x2+ax+2=0有两个不相等的实根的概率为()A.23B.13C.12D.512【解析】选A.基本事件总数为6,若方程有不相等的实根,则a2-80,满足上述条件的a为3,4,5,6,故P(A)=46=23.7.(2016长沙高一检测)袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.15B.25C.35D.45【解析】选B.利用古典概型求解.设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为:(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个.两球颜色为一白一黑的基本事件有:(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个.所以其概率为615=25.8.(2016全国卷)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815B.18C.115D.130【解析】选C.根据题意可以知道,所输入密码所有可能发生的情况如下:M1,M2,M3,M4,M5,I1,I2,I3,I4,I5,N1,N2,N3,N4,N5共15种情况,而正确的情况只有其中一种,所以输入一次密码能够成功开机的概率是115.【补偿训练】(2015全国卷)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.310B.15C.110D.120【解析】选C.从1,2,3,4,5中任取3个不同的数有(1,2,3),(1,2,4),(1,2,5), (1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种,其中(3,4,5)为一组勾股数,共一种,所以3个数构成一组勾股数的概率为110.二、填空题(每小题5分,共10分)9.小明一家想从北京、济南、上海、广州四个城市中任选三个城市作为2016年暑假期间的旅游目的地,则济南被选入的概率是_.【解题指南】解答本题可先考虑所求事件的对立事件的概率,然后利用对立事件即可求解.【解析】事件“济南被选入”的对立事件是“济南没有被选入”.某城市没有入选的可能的结果有四个,故“济南没有被选入”的概率为14,所以其对立事件“济南被选入”的概率为P=1-14=34.答案:3410.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为_.【解析】设4只球分别为白、红、黄1、黄2,从中一次随机摸出2只球,所有基本事件为(白,红)、(白,黄1)、(白,黄2)、(红,黄1)、(红,黄2)、(黄1,黄2),共6个,颜色不同的有(白,红)、(白,黄1)、(白,黄2)、(红,黄1)、(红,黄2),共5个,所以2只球颜色不同的概率为56.答案:56三、解答题11.(10分)(2016天津高一检测)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目.(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,列出所有可能的抽取结果;求抽取的2所学校均为小学的概率.【解析】(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2), (A1,A3), (A1,A4),(A1,A5),(A1,A6),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论