




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十五讲平面向量的数量积 回归课本 1 向量的夹角 1 已知两个非零向量a和b 作则 aob 叫做向量a与b的夹角 2 向量夹角 的范围是 0 a与b同向时 夹角 0 a与b反向时 夹角 3 如果向量a与b的夹角是90 我们说a与b垂直 记作a b 2 向量的投影 a cos b cos 叫做向量a在b方向上 b在a方向上 的投影 3 平面向量数量积的定义a b a b cos 是向量a与b的夹角 规定 零向量与任一向量的数量积为0 4 向量数量积的性质设a b都是非零向量 e是与b方向相同的单位向量 是a与e的夹角 则 1 e a a e a cos 2 a b a b 0 3 当a与b同向时 a b a b 当a与b反向时 a b a b 特别地 a a a 2或 a 4 cos 5 a b a b 5 向量数量积的运算律 1 a b b a 交换律 2 a b a b a b 数乘结合律 3 a b c a c b c 分配律 6 平面向量数量积的坐标表示 1 若a x1 y1 b x2 y2 则a b x1x2 y1y2 2 若a x1 y1 b x2 y2 是a与b的夹角 则cos 3 若向量a的起点坐标和终点坐标分别为 x1 y1 x2 y2 则 a 这就是平面内两点间的距离公式 4 设a x1 y1 b x2 y2 则a b a b 0 x1x2 y1y2 0 考点陪练 1 2010 北京 a b为非零向量 a b 是 函数f x xa b xb a 为一次函数 的 a 充分而不必要条件b 必要而不充分条件c 充分必要条件d 既不充分也不必要条件 解析 函数f x x2a b a2 b2 x a b 当函数f x 是一次函数时必然要求a b 0 即a b 但当a b a b 时 函数f x 不是一次函数 故选b 答案 b 2 2010 重庆 已知向量a b满足a b 0 a 1 b 2 则 2a b a 0b c 4d 8解析 因为 2a b 2 2a b 2 4a2 b2 4a b 4a2 b2 4 4 8 故 2a b 选b 答案 b 答案 d 答案 a 答案 b 类型一数量积的性质及运算解题准备 1 数量积的运算要注意a 0时 a b 0 但a b 0时不能得到a 0 或b 0 因为a b时 也有a b 0 2 若a b c是实数 则ab ac b c a 0 但对于向量 就没有这样的性质 即若向量a b c满足a b a c a 0 则不一定有b c 即等式两边不能同时约去一个向量 但可以同时乘以一个向量 答案 25 2 设a b c是任意的非零向量 且互不共线 给出以下命题 a b c c a b 0 a b a b b c a c a b不与c垂直 3a 2b 3a 2b 9 a 2 4 b 2 其中是真命题的是 解析 对于 只有当向量b c的方向相同时 二者才相等所以 错 考虑 式对应的几何意义 由三角形两边之差小于第三边知 正确 由 b c a c a b c 0知 b c a c a b与c垂直 故 错 向量的乘法运算符合多项式乘法法则 所以 正确 所以正确命题的序号是 答案 类型二利用数量积解决长度 垂直问题解题准备 常用的公式与结论有 典例2 已知 a 4 b 8 a与b的夹角是120 1 计算 a b 4a 2b 2 当k为何值时 a 2b ka b 分析 利用 a 及a b a b 0即可解决问题 解 由已知 a b 4 8 16 1 a b 2 a2 2a b b2 16 2 16 64 48 a b 4a 2b 2 16a2 16a b 4b2 16 16 16 16 4 64 3 162 4a 2b 2 若 a 2b ka b 则 a 2b ka b 0 ka2 2k 1 a b 2b2 0 16k 16 2k 1 2 64 0 k 7 类型三利用数量积解决夹角问题解题准备 1 涉及到与夹角有关的问题 往往利用向量的夹角公式解决 这也是平面向量数量积的一个重要考点 3 在应用上述公式求夹角时 要考虑夹角的取值范围 典例3 已知a b都是非零向量 且 a b a b 求a与a b的夹角 分析 由公式cos 可知 求两个向量的夹角关键是求数量积及模的积 本题中 a b a b 的充分利用是求数量积的关键 考虑怎样对条件进行转化 解 解法一 由 a b a b 得 a 2 b 2 b 2 a2 2a b b2 所以a b a2 而 a b 2 a 2 2a b b 2 2 a 2 2 a 2 3 a 2 所以 a b a 设a与a b的夹角为 则cos 由于0 180 所以 30 反思感悟 1 求两个向量的夹角 需求得a b及 a b 或得出它们的关系 注意夹角的取值范围是 0 180 正确理解公式是关键 2 向量有两种表示形式 即坐标法和几何法 解题时要灵活选择 本题通过比较两种方法发现 利用向量的几何形式解答此类题目显得更加简捷和直观 错源一利用点平移与向量平移设置陷阱 典例1 已知a 3 7 b 5 2 将按向量a 1 2 平移后所得向量的坐标是 a 1 7 b 2 5 c 10 4 d 3 3 错解 因为a 3 7 b 5 2 所以 2 5 将x 2 y 5及h 1 k 2 代入平移公式 得x 2 1 3 y 5 2 3 故按向量a平移后所得向量坐标是 3 3 选d 剖析 平移公式揭示的是点沿着向量平移前后坐标的变化关系 它并不适合向量平移规律 上述错误是典型的乱用公式 正解 因向量平移后仍与原向量相等 故故选b 答案 b 错源二利用平移前后的解析式设置陷阱 典例2 将函数y f x 的图象按向量a平移 使图象上的点a的坐标由 2 3 变为 3 5 则平移后图象的解析式为 a y f x 1 2b y f x 1 2c y f x 1 2d y f x 1 2 剖析 上述错误是把点的平移与图象的平移混为一谈 答案 a 错源三利用平移方向设置陷阱 典例3 将y 2x 6的图象按向量a平移后 得到y 2x的图象 那么a 错解 因为y 2x 6 2 x 3 所以要得到y 2x的图象 只需将y 2x 6的图象沿着x轴向左平移3个单位长度 故a 3 0 又y 2x的图象可以看作将y 2x 6的图象沿着y轴向上平移6个单位长度得到的 故a 0 6 所以向量a 3 0 或 0 6 剖析 上述错误是对图象平移的定义没有弄清所致 根据图象平移的定义可知 图象的平移就是将图象f上所有点按照同一方向 移动同样长度 得到图象f 此处它只需按照同一方向 而没有要求一定是水平或竖直的移动 正解 设a h k p x y 是函数y 2x 6的图象上任意一点 它在函数y 2x的图象上的对应点为p x y 由平移公式得将它们代入y 2x 6中 得y k 2 x h 6 即y 2x 2h 6 k 所以平移后函数解析式为y 2x 2h 6 k 因为y 2x 2h 6 k与y 2x为同一函数 所以 2h 6 k 0 即k 2h 6 因此 所求向量a h 2h 6 h r 答案 h 2h 6 h r 错源四误用实数的运算律或运算法则而致错 典例4 已知a b都是非零向量 且向量a 3b与7a 5b垂直 向量a 4b与7a 2b垂直 求向量a与b的夹角 两式相减得46a b 23b2 0 即b 2a b 0 所以b 0 舍去 或2a b 0 由2a b 0知a与b同向 故向量a与b的夹角为0 剖析 本题误用实数的运算性质 即实数a b若满足ab 0则必有a 0或b 0 但对于向量a b若满足a b 0 则不一定有a 0或b 0 因为由a b a b cos 知与 有关 当 90 时 a b 0恒成立 此时a b均可以不为0 正解 由前知b2 2a b 代入7a2 16a b 15b2 0得a2 2a b 所以a2 b2 2a b 故cos 则两向量的夹角 60 评析 向量的数量积与实数的积有着本质上的区别 其主要表现为运算律或运算法则上的区别 因此解答向量的数量积时 不要受到实数积形成的定势思维的影响 技法一方程思想 答案 b 方法与技巧 本题考查的是单位向量问题 有关单位向量的求解常常根据题设构造方程组 通过解方程组求解 技法二分类讨论思想 典例2 已知 a 4 b 5 当a b时 求a与b的数量积 解题切入点 已知 a 4 b 5 求a b 只需确定其夹角 注意到a b时 有 0 和 180 两种可能 故需分类讨论 解 因为a b 故当a与b同向时 0 a b a b cos0 20 当a与b反向时 180 所以a b a b cos180 20 方法与技巧 对问题分类讨论时 要分类完整 做到不重不漏 技法三整体思想 典例3 若向量a b c满足a b c 0 且 a 3 b 1 c 4 则a b b c c a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年煤气安全操作面试题及参考答案
- 2025年智慧仓储技术应用专家考试题库及答案全解
- 2025年人力资源管理师初级面试题集锦
- 2025年旅游行业营销策划师招聘笔试模拟题集
- 2025年财务会计实操模拟题集及账务处理技巧含答案
- 2025年物联网技术中级工程师面试题详解及答题技巧
- 2025年护士执业资格中级考试模拟试题及参考答案详解
- 2025年特岗教师招聘考试初中政治面试高分突破策略
- 2025年物资供应链管理与运营实务手册及模拟题集
- 人物描写课件教学设计
- 2025年公安局招聘警务辅助人员考试笔试试题(含答案)
- 工厂车间设备维修维护管理手册
- 奶茶店安全知识培训课件
- 高中英语定语从句超全解析
- 肥胖儿童的运动干预 4
- 中国淘宝村研究报告
- 纺织行业主要工艺流程和用水环节
- DB62∕T 3083-2017 HF永久性复合保温模板现浇混凝土建筑保温体系技术规程
- 现浇梁劳务分包合同
- 人教版八年级下册英语单词表默写版(直接打印)
- Q∕GDW 12070-2020 配电网工程标准化设计图元规范
评论
0/150
提交评论