




已阅读5页,还剩46页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有限元法基础FiniteElementMethod Longyuhong PhDSchoolofMechantronicEngineering GuilinUniversityofElectronicTechnology Guilin 541004 P R C Tel mail longyuhong02 桂林电子科技大学机电工程学院 InstituteofMechanicalEngineeringandAutomationIMEA 2020 2 9 有限单元法简介 2 课时安排 共40学时有限元法 32学时实验 8学时 2020 2 9 有限单元法简介 3 考试考核成绩构成 InstituteofMechanicalEngineeringandAutomation 课程作业成绩和平时表现 10 实验成绩 20 Ansys软件上机实验期末考试成绩 70 2020 2 9 有限单元法简介 4 课程学习基本要求 教材及参考书 InstituteofMechanicalEngineeringandAutomation 1 李人宪 有限单元法基础 第二版 M 北京 国防工业出版社 20042 傅永华 有限单元法基础 M 武汉 武汉大学出版社 20033 王生洪等 有限单元法基础及应用 M 北京 国防工业出版社 19904 黄国权 有限单元法基础及ANSYS应用 M 北京 机械工业出版社 20045 赵经文等 结构有限分析 M 北京 科学出版社 2001 2020 2 9 有限单元法简介 5 学习目的及方法 InstituteofMechanicalEngineeringandAutomation 目的了解FEM数学力学基础 把握FEM求解具体问题的基本过程 应用FEM 特别是运用已有的通用或专用软件求解实际工程技术问题 方法注重深入理解FEM思想的建立 数学力学基础 运用通用或专用有限元程序进行工程问题分析 一 数值模拟方法概述二 有限单元法简介三 有限单元法分析步骤四 利用有限元软件进行工程分析五 结后语 第1章有限单元法概述 2020 2 9 有限单元法简介 7 一 数值模拟方法概述 工程技术领域中的许多力学问题和场问题 如固体力学中的位移场 应力场分析 电磁学中的电磁分析 振动特性分析 热力学中的温度场分析 流体力学中的流场分析等 都可以归结为在给定边界条件下求解其控制方程的问题 虽然人们能够得到它们的基本方程和边界条件 但是能够用解析法求解的只是少数性质比较简单和边界比较规则的问题 实际结构的形状和所受到的载荷往往比较复杂 按解析法求解是非常困难的 2020 2 9 有限单元法简介 8 一 数值模拟方法概述 解决这类复杂问题主要有两种方法 1 引入简化假设 使其达到能用解析法求解的状态 然后求其近似解 未必可行 容易导致不正确的解答 2 保留问题的复杂性 利用数值模拟方法求得问题的近似解 较多采用 数值模拟技术 即CAE技术 Computer aidedEngineering 是人们在现代数学 力学理论的基础上 借助于计算机技术来获得满足工程要求的数值近似解 是现代工程仿真学发展的重要推动力之一 2020 2 9 有限单元法简介 9 一 数值模拟方法概述 目前在工程技术领域内常用的数值模拟方法有 1 有限单元法FEM FiniteElementMethod 2 边界元法BEM BoundaryElementMethod 3 有限差分法FDM FiniteDifferenceMethod 4 离散单元法DEM DiscreteElementMethod 其中有限单元法是最具实用性和应用最广泛的 2020 2 9 有限单元法简介 10 一 数值模拟方法概述 数值模拟结合计算机技术形成的应用软件在工程中得到广泛的应用 国际上著名的有限元通用软件有 ANSYS ABAQUS MCS PATRAN MCS NASTRAN MCS MARC ADINA FLAC等它们大多采用FORTRAN语言编写 不仅包含多种条件下的有限元分析程序 而且带有强大的前处理和后处理程序 大多数有限元通用软件拥有良好的用户界面 使用方便 功能强大 2020 2 9 有限单元法简介 11 FEM求解工程问题思路 工程问题的求解基本过程 InstituteofMechanicalEngineeringandAutomation 二 有限单元法简介 2020 2 9 有限单元法简介 12 1 有限元法定义是一种工程物理问题的数值分析方法 根据近似分割和能量极值原理 把求解区域离散为有限个单元的组合 研究每个单元的特性 组装各单元 通过变分原理 把问题化成线性代数方程组求解 分析指导思想化整为零 裁弯取直 以简驭繁 变难为易 二 有限单元法简介 2020 2 9 有限单元法简介 13 2 发展简史1943年 Courant提出有限元法概念1956年 Turner和Clough第一次用三角形单元离散飞机机翼 借助有限元法概念研究机翼的强度及刚度1960年 Clough正式提出有限元法 FEM 20世纪60年代 我国数学家冯康把FEM总结成凡是椭圆形偏微分方程都可用FEM求解20世纪60年代以后 由于数学界的参与 FEM得到蓬勃发展 并且扩大了应用 二 有限单元法简介 2020 2 9 有限单元法简介 14 3 发展方向新型单元的研究有限元的数学理论向新领域扩展应用大型通用程序的编制和设计ANSYS NASTRAN ABAQUS开发微机用版本设计自动化及优化设计 CAD CAE CAM 二 有限单元法简介 2020 2 9 有限单元法简介 15 4 有限元法的分类以方程中未知数代表的意义分类 有限元位移法 未知数为位移有限元力法 未知数为力有限元混合法 未知数为力和位移 以推导方法分类 直接法变分法加权余数法 二 有限单元法简介 2020 2 9 有限单元法简介 16 有限单元法的常用术语 二 有限单元法简介 真实系统 有限元模型 有限元模型是真实系统理想化的数学抽象 定义 2020 2 9 有限单元法简介 17 自由度 DOFs degreeoffreedoms 自由度 DOFs 用于描述一个物理场的响应特性 结构DOFs ROTZ UY ROTY UX ROTX UZ 2020 2 9 有限单元法简介 18 节点和单元 节点 空间中的坐标位置 具有一定自由度和存在相互物理作用 单元 一组节点自由度间相互作用的数值 矩阵描述 称为刚度或系数矩阵 单元有线 面或实体以及二维或三维的单元等种类 有限元模型由一些简单形状的单元组成 单元之间通过节点连接 并承受一定载荷 载荷 2020 2 9 有限单元法简介 19 节点和单元 续 节点自由度是随连接该节点单元类型变化的 J I I J J K L I L K I P O M N K J I L 三维杆单元 铰接 UX UY UZ 三维梁单元 二维或轴对称实体单元 UX UY 三维四边形壳单元 UX UY UZ 三维实体热单元 TEMP J P O M N K J I L 三维实体结构单元 ROTX ROTY ROTZ ROTX ROTY ROTZ UX UY UZ UX UY UZ 2020 2 9 有限单元法简介 20 单元形函数 FEA Finiteelementanalysis 仅仅求解节点处的DOF值 单元形函数是一种数学函数 规定了从节点DOF值到单元内所有点处DOF值的计算方法 因此 单元形函数提供出一种描述单元内部结果的 形状 单元形函数描述的是给定单元的一种假定的特性 单元形函数与真实工作特性吻合好坏程度直接影响求解精度 2020 2 9 有限单元法简介 21 单元形函数 续 2020 2 9 有限单元法简介 22 单元形函数 续 遵循 DOF值可以精确或不太精确地等于在节点处的真实解 但单元内的平均值与实际情况吻合得很好 这些平均意义上的典型解是从单元DOFs推导出来的 如 结构应力 热梯度 如果单元形函数不能精确描述单元内部的DOFs 就不能很好地得到导出数据 因为这些导出数据是通过单元形函数推导出来的 遵循原则 当选择了某种单元类型时 也就十分确定地选择并接受该种单元类型所假定的单元形函数 在选定单元类型并随之确定了形函数的情况下 必须确保分析时有足够数量的单元和节点来精确描述所要求解的问题 2020 2 9 有限单元法简介 23 二 有限单元法简介 有限单元法的基本思想 1 将一个连续域离散化为有限个单元 并通过有限个节点相连接的等效集合体 由于单元能按照不同的联结方式进行组合 且单元本身又可以有不同形状 因此可以模型化几何形状复杂的求解域 2 有限元法利用在每一个单元内假设的的近似函数来分片地表示全求解域上待求的未知场函数 单元内的近似函数由未知场函数在单元的各个节点的数值和其插值函数来表达 3 一个问题的有限元分析中 未知场函数在各个节点上的数值就成为新的未知量 从而使一个连续的无限自由度问题变成离散的有限自由度问题 4 一经求解出这些未知量 就可以通过插值函数计算出各个单元内场函数的近似值 从而得到整个求解域上的近似解 显然 随着单元数目的增加 也即单元尺寸的缩小 或者随着单元自由度的增加以及插值函数精度的提高 解的近似程度将不断改进 如果单元是满足收敛要求的 近似解最后将收敛于精确解 2020 2 9 有限单元法简介 24 三 有限单元法分析步骤 有限元法分析问题的基本步骤 1 结构的离散化离散化就是将要分析的结构分割成有限个单元体 并在单元的指定位置设置节点 使相邻单元的有关参数具有一定的连续性 构成单元的集合体代替原来的结构 结构离散化时 划分的单元大小和数目应根据计算精度的要求和计算机的容量来决定选取坐标 右手法则 选择合适的单元 离散结构物为有限个单元 并对单元 节点进行编号 2020 2 9 有限单元法简介 25 三 有限单元法分析步骤 2 选择位移插值函数为了能用节点位移表示单元体的位移 应变和应力 在分析连续体问题时 必须对单元中位移的分布做出一定的假设 一般假定位移是坐标的某种简单函数 选择适当的位移函数是有限单元法中的关键 f 单元内任意点的位移列矩阵 N 单元形函数矩阵 单元节点位移的列矩阵 2020 2 9 有限单元法简介 26 三 有限单元法分析步骤 3 分析单元的力学特性利用几何方程 本构方程和变分原理得到单元的刚度矩阵和载荷矩阵 R e K e e R e 单元节点力 K e 单元刚度矩阵 2020 2 9 有限单元法简介 27 三 有限单元法分析步骤 4 集合所有单元平衡方程 得到整体结构的平衡方程先将各个单元刚度矩阵集合成整体刚度矩阵 K 然后将各单元的等效节点力列阵集合成总的载荷列阵 K K e5 由平衡方程求解未知节点位移 按照问题的边界条件修改总的平衡方程 并进行求解 2020 2 9 有限单元法简介 28 三 有限单元法分析步骤 6 单元应变和应力的计算根据已知结点的位移利用弹性力学方程和位移插值函数算出单元的应变和应力 2020 2 9 有限单元法简介 29 四 利用有限元软件进行工程分析 所有的通用有限元软件都包括 前处理 求解器 后处理三个有逻辑顺序的模块 在进行实际工程分析时 也该按照以上三个模块来进行 进入求解器进行求解 设定分析步骤 输出变量 前处理 建模 材料特性 单元选择及网格划分 进入后处理 变形图 等值线图 列表显示等等后处理 2020 2 9 有限单元法简介 30 四 利用有限元软件进行工程分析 利用有限元软件进行工程问题的分析 一般应按下列步骤进行 一 制订分析方案需考虑以下几个方面 2020 2 9 有限单元法简介 31 1 分析领域 几何体载荷物理系统 2020 2 9 有限单元法简介 32 2 分析目标 力 位移 温度 还是其他 2020 2 9 有限单元法简介 33 3 线性 非线性分析 我的物理系统是在线性还是非线性状态下工作 线性求解能满足我的需要吗 如果不能 必须考虑哪种非线性特性 许多情况和物理现象都要求进行非线性计算 2020 2 9 有限单元法简介 34 4 静力 动力分析 静力求解能否满足你的分析要求 如果不能 应当进行那种动力分析 动力分析的所有载荷都是随时间变化的 但在许多情况下动力影响可以忽略不计 一般情况下 激励频率低于结构最小固有频率的1 3时静力求解就足够了 惯性力是动力问题不同于静力问题的关键之处 2020 2 9 有限单元法简介 35 5 分析细节的考虑 在建立分析模型之前必须制订好建模方案 必须考虑哪些细节问题 对称 反对称 轴对称 模型中存在应力奇异 选用那种类型的单元 线单元壳单元X Y平面单元平面应力或应变单元轴对称单元谐单元实体单元专用单元线性单元 高阶单元 P单元四边形单元 三角形单元 块单元 四面体单元 2020 2 9 有限单元法简介 36 6 充分利用结构的对称性 2020 2 9 有限单元法简介 37 7 网格密度 相邻单元的尺寸尽可能接近 应力变化大处单元应密集一些 结点的多少与疏密要考虑计算机的容量和计算精度 结点所连接的单元个数尽可能一致 2020 2 9 有限单元法简介 38 8 单位制 注意 ANSYS和ABAQUS大型有限元软件中 没有固定的单位制 大家在使用的过程中 可以自己选用前后一致的一套单位制 则最后所得结果的单位即为即为所选单位制对应的单位 建议 尽量采用国际单位制 2020 2 9 有限单元法简介 39 9 材料特性 材料特性是有限元分析必须提供的数据 其准确与否直接影响到计算的精度 必要的时候需通过试验提供 一个复杂分析中可能包含很多种性质截然不同的材料 建模的时候应以足够的关键字以识别 很多有限元软件中 都提供用户接口 若软件中没有现成的材料模型 用户可以自行添加 2020 2 9 有限单元法简介 40 10 载荷 有限元软件中的载荷除了传统意义的载荷 重力 集中力 温度 电势等 外 还包括边界条件在模型建立之前 应该确定所分析模型的工作环境 作用载荷的种类 大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承德护理职业学院《信息产业政策概论》2024-2025学年第一学期期末试卷
- 皮肤干细胞研究与应用
- 黑龙江艺术职业学院《生物标本制作》2024-2025学年第一学期期末试卷
- (2025年标准)厂房互换合同协议书
- (2025年标准)产学研结题协议书
- 术前化验单解读
- 黑龙江中医药大学《民族传统体育》2024-2025学年第一学期期末试卷
- 宿舍卫生对比分析与优化管理
- 维护项目技术方案
- 玄麦甘桔颗粒讲解
- 2025年法检系统书记员招聘考试(申论)历年参考题库含答案详解(5套)
- 2025年幼儿园教师《指南》《幼儿教师专业标准》学习测试题(附答案)
- 新版2025心肺复苏术指南
- T-NAHIEM 101-2023 急诊科建设与设备配置标准
- GB/Z 43281-2023即时检验(POCT)设备监督员和操作员指南
- 汽轮机原理-凝汽器课件
- 二年级下册认识方向练习题
- 检验报告(风机)
- 鼻骨及眼眶骨折的CT诊断课件
- 房屋拆除工程监理规划
- 最新版个人征信报告(可编辑+带水印)
评论
0/150
提交评论