《1.1.1回归分析的基本思想及其初步应用(1)》导学案.doc_第1页
《1.1.1回归分析的基本思想及其初步应用(1)》导学案.doc_第2页
《1.1.1回归分析的基本思想及其初步应用(1)》导学案.doc_第3页
《1.1.1回归分析的基本思想及其初步应用(1)》导学案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1.1回归分析的基本思想及其初步应用(1)导学案学习目标 1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解线性回归模型与函数模型的差异,了解衡量两个变量之间线性相关关系得方法-相关系数.学习过程 一、课前准备(预习教材P2 P4,找出疑惑之处)问题1:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?复习1:函数关系是一种关系,而相关关系是一种关系. 复习2:回归分析是对具有关系的两个变量进行统计分析的一种常用方法,其步骤: .二、新课导学 学习探究实例 从某大学中随机选取8名女大学生,其身高/cm和体重/kg数据如下表所示编号12345678身高165165157170175165155170体重4857505464614359问题:画出散点图,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重.解:由于问题中要求根据身高预报体重,因此选自变量x,为因变量.(1)做散点图:从散点图可以看出 和 有比较好的 相关关系.(2) = =所以于是得到回归直线的方程为r0, _相关, r0 _相关;相关系数的绝对值越接近于1,两个变量的线性相关关系 ,它们的散点图越接近_ ;_ ,两个变量 _ 关系. 典型例题例1某班5名学生的数学和物理成绩如下表: 学生学科ABCDE数学成绩(x)8876756462物理成绩(y)7865706260 (1)画散点图;(2)求物理成绩y对数学成绩x的回归直线方程;(3)该班某学生数学成绩为96,试预测其物理成绩;变式:该班某学生数学成绩为55,试预测其物理成绩;小结:求线性回归方程的步骤: 动手试试练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗 (吨标准煤)的几组对照数据 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值)三、总结提升 学习小结1. 求线性回归方程的步骤:2. 线性回归模型与一次函数有何不同 知识拓展在实际问题中,是通过散点图来判断两变量之间的性关系的,学习评价 自我评价你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列两个变量具有相关关系的是( )A. 正方体的体积与边长B. 人的身高与视力C.人的身高与体重 D.匀速直线运动中的位移与时间2. 在画两个变量的散点图时,下面哪个叙述是正确的( )A.预报变量在x 轴上,解释变量在 y 轴上 B. 解释变量在x 轴上,预报变量在 y 轴上C. 可以选择两个变量中任意一个变量在x 轴上 D. 可选择两个变量中任意一个变量在 y 轴上3.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论