




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 专题三数列 第10课时数列的通项与求和 2 3 4 1 构造法求通项 5 这是一个需要通过换元构造等差数列才能化解的问题 破解的关键是根据题意列出递推公式 即根据直角三角形三边的平方关系列出数列的递推关系 6 7 8 9 10 2 裂项法求和 11 12 13 14 15 16 17 3 错位相减法求和 18 求证等比数列 可从两个方面出发 一是等比数列的定义 即证 二是等比中项 即证 19 20 21 第 1 小题充分利用平面几何中两圆外切的充要条件 找出rn 1与rn之间的等量关系 从而结合定义得证 第 2 小题 由 1 可知rn的通项公式 观察新数列 知 可利用错位相减法求和 培养推理论证能力 22 an sn sn 1 n 2 是数列中一个非常重要的公式 任何数列都满足这个公式 当题目的条件中出现an与sn的关系式时 这个公式可作为突破口 另外 错位相减法作为一种重要的求和方法 也要熟练掌握 23 24 25 1 证明一个数列是等差 比 数列 常用两种基本方法 定义法 等差 比 中项法 注意等比数列中an 0 2 等差 比 数列的通项公式an与前n项和sn 共涉及五个量 n d q an sn a1 这五个量知二求三 体现了方程的思想 做题时 选用公式要恰当 善于减少运算量 达到快速 准确求解的目的 3 运用等比数列求和公式时 需对q 1和q 1进行讨论 26 4 求通项 求和的通项要运用转化思想 转化为等差 等比数列 5 在解数列问题时 除
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 与作家合作合同范例
- 2025年建筑法规知识试题及答案
- 产品代销合同范例6
- 买车质保合同范例
- 个人商喂租赁合同范例
- 亲人间购房合同范例
- 个人合伙工作合同范例
- 公司资产合同范例
- 中介厂房合同范例
- 产品区域授权合同范例
- 机床精密加工技术优化-深度研究
- 《XR技术应用》课件
- 乘除法挑战1000道练习题随时打印
- HY/T 0382-2023海岸带生态系统减灾功能评估技术导则红树林和盐沼
- 电化学储能电站的安全管理
- 小学写作社团年度活动计划
- 2025年辽宁沈阳地铁集团有限公司招聘笔试参考题库含答案解析
- 北京小学学位借用协议书
- 山东省夏季普通高中学业水平考试(会考)生物试题及参考答案
- 遗体转运合同模板
- 消费者价格敏感度研究-洞察分析
评论
0/150
提交评论