(浙江专用)高考数学一轮复习 探究课6 导数问题中的热点题型 理.doc_第1页
(浙江专用)高考数学一轮复习 探究课6 导数问题中的热点题型 理.doc_第2页
(浙江专用)高考数学一轮复习 探究课6 导数问题中的热点题型 理.doc_第3页
(浙江专用)高考数学一轮复习 探究课6 导数问题中的热点题型 理.doc_第4页
(浙江专用)高考数学一轮复习 探究课6 导数问题中的热点题型 理.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探究课六 导数问题中的热点题型(建议用时:80分钟)1已知函数f(x)ln xx2ax(ar)若函数f(x)在其定义域上为增函数,求a的取值范围解法一函数f(x)的定义域为(0,),f(x)ln xx2ax,f(x)2xa.函数f(x)在(0,)上单调递增,f(x)0,即2xa0对x(0,)都成立a2x对x(0,)都成立当x0时,2x22,当且仅当2x,即x时取等号a2,即a2.a的取值范围为2,)法二函数f(x)的定义域为(0,),f(x)ln xx2ax,f(x)2xa.方程2x2ax10的判别式a28.当0,即2a2时,2x2ax10,此时,f(x)0对x(0,)都成立,故函数f(x)在定义域(0,)上是增函数当0,即a2或a2时,要使函数f(x)在定义域(0,)上为增函数,只需2x2ax10对x(0,)都成立设h(x)2x2ax1,则解得a0.故a2.综合得a的取值范围为2,) 2.(2015南山中学月考)已知函数f(x)sin x(x0),g(x)ax(x0)(1)若f(x)g(x)恒成立,求实数a的取值范围;(2)当a取(1)中的最小值时,求证:g(x)f(x)x3.(1)解令h(x)sin xax(x0),则h(x)cos xa.若a1,h(x)cos xa0,h(x)sin xax(x0)单调递减,h(x)h(0)0,则sin xax(x0)成立若0a0,h(x)sin xax(x(0,x0)单调递增,h(x)h(0)0,不合题意当a0,结合f(x)与g(x)的图象可知显然不合题意综上可知,a1.(2)证明当a取(1)中的最小值为1时,g(x)f(x)xsin x.设h(x)xsin xx3(x0),则h(x)1cos xx2.令g(x)1cos xx2,则g(x)sin xx0(x0),所以g(x)1cos xx2在0,)上单调递减,此时g(x)1cos xx2g(0)0,即h(x)1cos xx20,所以h(x)xsin xx3在x0,)上单调递减所以h(x)xsin xx3h(0)0,则xsin xx3(x0)所以,当a取(1)中的最小值时,g(x)f(x)x3.3(2014杭州调研测试)设a0,函数f(x).(1)若a,求函数f(x)的单调区间;(2)若当x时,函数f(x)取得极值,证明:对于任意的x1,x2,|f(x1)f(x2)| .(1)解由题意得f(x).令f(x)0,即(x1)20,解得x或x.所以函数f(x)在,上单调递增同理,由f(x)0,得x.所以函数f(x)在上单调递减(2)证明当x时,函数f(x)取得极值,即f0,2a20,a.同(1)易知,f(x)在,上单调递增,在上单调递减当x时,f(x)取得极大值f,当x时,f(x)取得极小值f,在上,f(x)的最大值是f,最小值是f.对于任意的x1,x2,|f(x1)f(x2)| ,即|f(x1)f(x2)| .4(2015重庆模拟)已知函数f(x)(x2axa)exx2,ar.(1)若函数f(x)在(0,)内单调递增,求a的取值范围;(2)若函数f(x)在x0处取得极小值,求a的取值范围解(1)f(x)(2xa)ex(x2axa)ex2xx(x2a)ex2,f(x)在(0,)内单调递增,f(x)0在(0,)内恒成立,即(x2a)ex20在(0,)内恒成立,即x2a在(0,)内恒成立,又函数g(x)x2在(0,)上单调递增,且g(0)0,a0.(2)令f(x)0,即x(x2a)ex20,或或(*)g(x)x2单调递增,设方程g(x)x2a的根为x0.若x00,则不等式组(*)的解集为(,0)和(x0,),此时f(x)在(,0)和(x0,)上单调递增,在(0,x0)上单调递减,与f(x)在x0处取极小值矛盾;若x00,则不等式组(*)的解集为(,0)和(0,),此时f(x)在r上单调递增,与f(x)在x0处取极小值矛盾;若x00,则不等式组(*)的解集为(,x0)和(0,),此时f(x)在(,x0)和(0,)上单调递增,在(x0,0)上单调递减,满足f(x)在x0处取极小值,由g(x)单调性,得ax02g(0)0,综上所述,a0.5已知函数f(x)xln(xa)的最小值为0,其中a0.(1)求a的值;(2)若对任意的x0,),有f(x)kx2成立,求实数k的最小值;(3)证明:ln(2n1)2(nn*)解(1)f(x)的定义域为(a,)f(x)1.由f(x)0,解得x1aa.当x变化时,f(x),f(x)的变化情况如下表:x(a,1a)1a(1a,)f(x)0f(x)极小值因此,f(x)在x1a处取得最小值,故由题意f(1a)1a0,所以a1.(2)当k0时,取x1,有f(1)1ln 20,故k0不合题意当k0时,令g(x)f(x)kx2,即g(x)xln(x1)kx2.g(x)2kx.令g(x)0,得x10,x21.当k时,0,g(x)0在(0,)上恒成立,因此g(x)在0,)上单调递减从而对于任意的x0,),总有g(x)g(0)0,即f(x)kx2在0,)上恒成立故k符合题意当0k时,0,对于x,g(x)0,故g(x)在内单调递增因此当取x0时,g(x0)g(0)0,即f(x0)kx不成立故0k不合题意综上,k的最小值为.(3)当n1时,不等式左边2ln 32右边,所以不等式成立当n2时,ln(2i1)ln(2i1)ln(2n1)在(2)中取k,得f(x)(x0),从而f(in*,i2),所以有ln(2n1)f(2)2ln 32ln 32ln 312.综上,ln(2n1)2,nn*.6(2014辽宁卷)已知函数f(x)(cos xx)(2x)(sin x1),g(x)3(x)cos x4(1sin x)ln .证明:(1)存在唯一x0,使f(x0)0;(2)存在唯一x1,使g(x1)0,且对(1)中的x0,有x0x1.证明(1)当x时,f(x)(1sin x)(2x)2xcos x0,f20,当t时,u(t)0,所以u(t)在(0,x0上无零点在上u(t)为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论