




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆璧山戴氏精品堂 高一数学1v1 主讲人:陈老师 几种特殊的函数知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等于0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数, 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中).4.对数的运算性质如果,那么加法:减法:数乘:换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点五:反函数1.反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.2.反函数的性质(1)原函数与反函数的图象关于直线对称.(2)函数的定义域、值域分别是其反函数的值域、定义域.(3)若在原函数的图象上,则在反函数的图象上.(4)一般地,函数要有反函数则它必须为单调函数.3.反函数的求法(1)确定反函数的定义域,即原函数的值域;(2)从原函数式中反解出;(3)将改写成,并注明反函数的定义域.知识点六:幂函数1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布 在第一、二象限(图象关于轴对称);是奇函数时,图象分 布在第一、三象限(图象关于原点对称);是非奇非偶函数 时,图象只分布在第一象限. (2)过定点:所有的幂函数在都有定义,并且图象都通过 点. (3)单调性:如果,则幂函数的图象过原点,并且在 上为增函数.如果,则幂函数的图象在 上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时, 幂函数为偶函数.当(其中互质,和), 若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数, 若为偶数为奇数时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流仓储运营成本控制方法
- 公司经营管理月度数据统计报告
- 初中毕业考试历年数学真题汇编
- 居民围墙砌筑施工合同范本范本下载
- 医药研发项目合作开发合同
- 服务业行业经营状况表格
- 论友谊议论文:朋友的价值与意义(5篇)
- 让花儿绽开笑脸100字10篇
- 2025-2030儿童财商教育行业市场现状分析与课程体系及投资潜力研究报告
- 2025-2030儿童绘本出版行业市场前景分析与投资机会预测报告
- 动量守恒定律模型归纳(11大题型)(解析版)-2025学年新高二物理暑假专项提升(人教版)
- 慢性阻塞性肺疾病(COPD)护理业务学习
- 2025-2026学年北师大版(2024)初中生物七年级上册教学计划及进度表
- 产科危急重症早期识别中国专家共识解读 3
- 医疗器械配送应急预案模板(3篇)
- DB65-T 4803-2024 冰川厚度测量技术规范
- 护理专业新进展介绍
- 小儿推拿进修总结汇报
- 2025公司应急预案演练计划(5篇)
- 医疗机构医院全员培训制度
- 2025仓库保管员试题及答案
评论
0/150
提交评论