江苏省高考数学二轮总复习 专题27 分类讨论的思想方法专题导练课件 理.ppt_第1页
江苏省高考数学二轮总复习 专题27 分类讨论的思想方法专题导练课件 理.ppt_第2页
江苏省高考数学二轮总复习 专题27 分类讨论的思想方法专题导练课件 理.ppt_第3页
江苏省高考数学二轮总复习 专题27 分类讨论的思想方法专题导练课件 理.ppt_第4页
江苏省高考数学二轮总复习 专题27 分类讨论的思想方法专题导练课件 理.ppt_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分类讨论的思想方法 在解决问题的过程中 我们常会遇到 一言难尽 的情况 问题中一些不确定的因素 使得我们难以用一个 统一 的方法去解决 这时我们把其划分为若干个局部问题 在每一个局部问题中 原先的不确定性不再影响问题的解决 每一个局部问题解决了 整个问题也就迎刃而解了 这就是分类讨论法 分类讨论既是一种重要的数学方法 也是一种重要的数学思想 由于有关分类讨论的数学问题具有明显的逻辑性 综合性 探索性 并能训练人的思维的条理性与概括性 因而在高考试题中往往占有较大的比重 一般说来 有关分类讨论的试题 相对难度较大 加 之考生的惧怕心理以及分类意识的缺乏与淡化 分类的盲目与随意 因而往往得分较低 故研究并掌握分类讨论思想方法 便有着非同寻常的意义 1 分类原则 施行分类的集合的全集必须是确定的 每一次分类的标准必须是统一的 分类必须是完整的 不出现遗漏 各子集必须是互斥的 不出现重复 实行多次分类时 必须逐级进行 不得越级 2 分类方法 明确讨论对象 确定对象的全体 确定分类标准 正确进行分类 逐步进行讨论 获取阶段性结果 归纳小结 综合得出结论 3 分类策略 化整为零各个击破 积零为整全歼问题 4 解题一般步骤 确定标准 合理分类 逐类讨论 归纳总结 5 解题时严把 四关 基础关 深刻理解基本知识与基本原理 分类关 找准划分标准 逻辑关 分类条理分明 层次清晰 检验关 注意对照题中的限制条件或隐含信息 合理取舍 1 根据有关定义与概念进行分类讨论有些数学概念本身就是以分类形式定义的 如直线与平面所成的角 三角函数值所在象限的符号 绝对值等 有些数学概念本身也有一定的限制 如直线的斜率 二次曲线中又包括椭圆 双曲线及抛物线等 一 分类讨论的动因进行分类讨论的关键是明确讨论的动因 即认识为什么要分类讨论 只有明确了讨论的原因 才能准确地 恰当地进行讨论 分析 显然这是由三角函数值符号的变化而引起的分类讨论 这里应对角x的终边所在的象限分别在一 二 三 四象限四种情形进行讨论 解析 当角x的终边所在的象限分别在一 二 三 四象限时 可得y的值分别为3 1 1 1 于是所求函数的值域为 3 1 例2 已知圆x2 y2 4 则经过点p 2 4 且与圆相切的直线方程为 分析 容易想到 设出直线的点斜式方程y 4 k x 2 再利用直线与圆相切的充要条件 圆心到切线的距离等于圆的半径 待定得出k值 从而得到所求直线方程 但要注意到 过点p的直线中 有斜率不存在的情形 这种情形的直线是否也满足题意呢 因此 本题需要对过点p的直线分两种情形讨论求解 2 按某些运算的要求进行分类讨论有些运算有一定的要求限制 如除法要求除式不为0 解不等式时要看两边是同乘一个正数还是负数 对数运算中要求真数为正数等 所有这些都是进行运算时须进行讨论的动因 例3 在xoy平面上给定曲线y2 2x 设点a a 0 a r 曲线上的点到点a的距离的最小值为f a 求f a 的函数表达式 分析 求两点间距离的最小值问题 先用公式建立目标函数 转化为二次函数在约束条件x 0下的最小值问题 而引起对参数a的取值讨论 注 本题解题的基本思路是先建立目标函数 求二次函数的最大值和最小值问题我们十分熟悉 但含参数a 以及还有隐含条件x 0的限制 所以要从中找出正确的分类标准 从而得到函数f a 的表达式 3 根据某些定理或公式的限制条件而引起的分类讨论有些数学定理或公式 其结论本身就是按分类讨论来进行表达的 如等比数列前n项和公式就是按q 1或来表述的 一元二次方程解的情况是按 的正负给出的 4 根据函数的某些性质进行分类讨论有些问题涉及函数的单调性 值域等 因此在解题时 常常要讨论参数的不同取值的情况 例5 飞机俯冲航线和山顶在同一铅直平面内 且与水平线成角 自山顶左上方的a处向山顶右下方俯冲 已知飞机在a处 位于山顶左上方 海拔为akm 测得山顶俯角为 现保持航向不变 飞行bkm到达b点 测得山顶俯角为 求山顶海拔高度h 分析 先作出示意图如图所示 在图中标出各已知量 然后分情况利用正弦定理求解 abc ab1c与 ab2c 求出ac 从而范围所求高度h de a df a acsin 二 简化分类的策略由于分类讨论一般过程较为冗长 叙述繁琐 且极易在完备性上造成失误 因此它并非一定是解决问题的良策 我们提倡在熟悉和掌握分类讨论思想的同时 要注意克服思维定势 处理好 分 与 合 局部 与 整体 之间的辩证统一的关系 充分挖掘求解问题中潜在的特殊性与简单性 尽可能地简化或避免分类讨论 1 改变一个观察视角 2 调换一下解题方法 分析 这里有绝对值 有参数a 有变量x 怎么办 去绝对值 怎么去 可用平方作差去绝对值 也可用分类讨论作差去绝对值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论