




已阅读5页,还剩56页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2 4平面任意力系向平面内一点简化 1 力的平移定理 可以把作用在刚体上点A的力F平行移到任一点B 但必须同时附加一个力偶 这个附加力偶的矩等于原来的力F对新作用点B的矩 其中 F F F M Fd MB F 作用在物体上的力的作用线任意分布在同一平面内 或近似分布在同一平面内 的力系 当物体及所受的力都对称于同一平面时 也为平面任意力系问题 2 2 平面任意力系向作用面内一点简化 主矢和主矩 任意点O为简化中心 F1 F1 F2 F2 Fn Fn Mi Mo Fi i 1 2 n 平面任意力系等效为两个简单力系 平面汇交力系和平面力偶系 3 Mo M1 M2 Mn FR 主矢 Mo 主矩 平面任意力系向作用面内任一点O简化 可得一个力和一个力偶 这个力等于该力系的主矢 作用线通过简化中心O 这个力偶的矩等于该力系的主矩 平面汇交力系可合成为作用线通过点O的一个力FR FR F1 F2 Fn 平面力偶系可合成为一个力偶 这个力偶的矩Mo等于各附加力偶矩的代数和 又等于原来各力对点O的矩的代数和 3 1 3 2 4 取坐标系Oxy i j为沿x y轴的单位矢量 则力系主矢的解析表达式为 主矢FR 的大小和方向余弦为 主矩的解析表达式 5 一物体的一端完全固定在另一物体上 这种约束称为固定端或插入端支座 6 3 平面任意力系的简化结果分析 简化结果可能有以下几种情况 即 1 FR 0 Mo 0 2 FR 0 Mo 0 3 FR 0 Mo 0 4 FR 0 Mo 0 FR 0 Mo 0 原力系合成为合力偶 合力偶矩为 2 平面任意力系简化为一个合力的情形 原力系简化为一个力 FR 就是原力系的合力 合力作用线通过简化中心O 1 平面任意力系简化为一个力偶的情形 a FR 0 Mo 0 7 原力系简化为一个力 合力矢等于主矢 合力的作用线在点O的哪一侧 根据主矢和主矩的方向确定 合力作用线到点O的距离为d 平面任意力系平衡 3 平面任意力系平衡的情形 b FR 0 Mo 0 FR 0 Mo 0 FR FR FR 8 平面任意力系的合力矩定理 由图 b 合力FR对点O的矩为 由式 3 2 得 合力矩定理 平面任意力系的合力对作用面内任一点的矩等于力系中各力对同一点的矩的代数和 MO FR FRd MO 9 例10已知F1 150N F2 200N F3 300N F F 200N 求力系向点O的简化结果 并求力系合力的大小及其与原点O的距离 解 10 得力系向点O的简化结果如图 b 合力及其与原点O的距离如图 c 11 例11水平梁AB受按三角形分布的载荷作用 如图示 载荷的最大值为q 梁长l 求合力作用线的位置 解 在梁上距A端为x处的载荷集度为q x qx l 在此处取的一微段dx 梁在微段dx受的力近似为F x qxdx l 设合力作用线到A端的距离为xC 梁由x 0到x l的分布载荷合力为 根据合力矩定理 12 小结 1 力的平移定理 平移一力的同时必须附加一个力偶 附加力偶的矩等于原来的力对新作用点的矩 2 平面任意力系向平面内任选一点O简化 可得一个力和一个力偶 这个力等于该力系的主矢 作用线通过简化中心O 这个力偶的矩等于该力系的主矩 3 平面任意力系的简化结果 1 FR 0 Mo 0 4 FR 0 Mo 0 2 FR 0 Mo 0 3 FR 0 Mo 0 合力偶 合力偶矩 合力 合力作用线通过简化中心O 平衡 合力 合力作用线到简化中心O的距离为 13 2 5平面任意力系的平衡条件和平衡方程 讨论平面任意力系的主矢和主矩都等于零的情形 FR 0Mo 0 主矢等于零 表明作用于简化中心O的汇交力系为平衡力系 主矩等于零 表明附加力偶系也是平衡力系 所以原力系必为平衡力系 即上式为平面任意力系平衡的充分条件 由上节分析结果可知 在另外几种情况下力系都不能平衡 只有当主矢和主矩都等于零时 力系才能平衡 上式为平面任意力系平衡的必要条件 平面任意力系平衡的充分必要条件 力系的主矢和对任一点的主矩都等于零 14 1 平衡条件的解析式 即平衡方程 2 二力矩式 3 三力矩式 条件是 A B两点的连线不能与x轴或y轴垂直 条件是 A B C三点不能共线 下一页 22 23 15 例12图示水平梁AB A端为固定铰链支座 B端为一滚动支座 梁长为4a 梁重P 作用在梁的中点C 在梁的AC段上受均布载荷q作用 在梁的BC段上受力偶作用 力偶矩M Pa 求A和B处的支座约束力 16 解 1 取AB梁为研究对象 画受力图 联解上各式得 2 列静力平衡方程 17 例13如图所示平面刚架AB 其上作用有力P和力偶M 力偶矩等于Pa 若P a均为已知 求A B两处的约束反力 18 解法一 1 选AB为研究对象 画受力图 2 列静力平衡方程 联解上各式得 19 二力矩式 解法二 1 选AB为研究对象 画受力图 2 列静力平衡方程 联解上各式得 D 17 20 解法三 1 选AB为研究对象 画受力图 2 列静力平衡方程 联解上各式得 三力矩式 17 21 例14自重为P 100KN的T字形刚架ABD 置于铅垂面内 载荷如图示 其中M 20KNm F 400KN q 20KN m l 1m 求固定端A的约束力 22 解 T字形刚架ABD的受力如图所示 解方程得 23 4 平面平行力系的平衡条件和平衡方程 如图 物体受平面平行力系F1 F2 Fn的作用 则平行力系的独立平衡方程为 如取x轴与各力垂直 不论力系是否平衡 恒有 平行力系平衡方程的二力矩式 24 例15塔式起重机如图所示 机身总重为W 220kN 作用线通过塔架的中心 最大起重量P 50kN 平衡块重Q 30kN 求 满载和空载时轨道A B的约束反力 并问此起重机在使用过程中有无翻倒的危险 1 起重机受力图如图 2 列平衡方程 解 解方程得 25 满载时 P 50kN 则 空载时 P 0 则 RA 45kN RB 255kN RA 170kN RB 80kN 讨论 a 满载时 为了保证起重机不致绕B点翻到 必须使RA 0 同理 空载时 为了保证起重机不致绕A点翻到 必须使RB 0 b 由上计算知 满载时 RA 45kN 0 空载时 RB 80kN 0 所以此起重机在使用过程中无翻倒的危险 26 例16塔式起重机如图 机架重为P1 700KN 作用线通过塔架的中心 最大起重量P2 200KN 最大悬臂长为12m 轨道AB的间距为4m 平衡荷重P3 到机中心距离为6m 求 1 保证起重机在满载和空载时都不致翻倒 平衡荷重P3为多少 2 当平衡荷重P3 180KN时 求满载时轨道A B给起重机轮子的反力 27 解 选起重机为研究对象 1 要使起重机不翻倒 应使作用在起重机上的力系满足平衡条件 满载时 为使起重机不绕点B翻倒 力系满足平衡方程 在临界情况下 FA 0 求出的P3值是所允许的最小值 空载时 为使起重机不绕点A翻倒 力系满足平衡方程 在临界情况下 FB 0 求出的P3值是所允许的最大值 28 起重机实际工作时不允许处于极限状态 要使起重机不翻倒 平衡荷重P3应在两者之间 即 75KN P3 350KN 2 取P3 180KN 求满载时作用于轮子的反力FA和FB 由平面平行力系的平衡方程 解方程得 验证 29 30 2 6物体系的平衡 静定和超静定问题 由若干个物体组成的系统称为物体系 物体系中的未知量数目等于独立平衡方程的数目时 所有未知量都能由平衡方程求出 这样的问题称为静定问题 物体系中的未知量数目多于独立平衡方程的数目时 未知量不能全部由平衡方程求出 这样的问题称为超静定问题 外力 外界物体作用于系统上的力叫外力 内力 系统内部各物体之间的相互作用力叫内力 物系平衡的特点 物系平衡时 物系中每个单体也是平衡的 每个单体可列3个平衡方程 整个系统可列3n个方程 设物系中有n个物体 31 32 物体系的平衡问题求解 1 可以选每个物体为研究对象 列出全部平衡方程 然后求解 2 也可先取整体为研究对象 列出平衡方程 解出部分未知量 再从系统中选取某些物体为研究对象 列出另外的平衡方程 直至求出所有未知量 33 例17图示组合梁 不计自重 由AC和CD两部分铰接而成 已知 F 10kN P 20kN 均布载荷q 5kN m 梁的BD段受线性分布载荷 q0 6kN m 求A和B处的约束反力 解 1 选整体为研究对象 34 2 选CD为研究对象 解得 35 例18齿轮传动机构如图示 齿轮 的半径为r 自重为P1 齿轮 的半径为R 2r 其上固结一半径为r的塔轮 轮 与轮 共重P2 2P1 齿轮压力角 20 物体C重为P 20P1 求 1 保持物体C匀速上升时 作用在轮 上力偶的矩M 2 光滑轴承A B的约束力 36 解 1 选取轮 及重物C为研究对象 解得 由平衡方程及压力角定义 37 2 选取轮 为研究对象 解得 38 例19图示钢结构拱架由两个相同的钢架AC和BC铰接 吊车梁支承在钢架的D E上 设两钢架各重为P 60KN 吊车梁重为P1 20KN 其作用线通过点C 载荷为P2 10KN 风力F 10KN 尺寸如图 D E两点在力P的作用线上 求固定铰支座A和B的约束力 39 解 1 选整个拱架为研究对象 受力如图 40 2 选右边拱架为研究对象 受力如图 3 选吊车梁为研究对象 受力如图 解得 41 例20图示构架 由直杆BC CD及直角弯杆AB组成 各杆自重不计 载荷分布及尺寸如图 销钉B穿透AB及BC两构件 在销钉B上作用一铅垂力F 已知q a M 且M qa2 求固定端A的约束力及销钉B对杆BC 杆AB的作用力 42 解 1 选CD杆为研究对象 其受力如图示 解得 2 选BC杆为研究对象 其受力如图示 解得 43 3 选销钉B为研究对象 其受力如图示 解得 即销钉B对杆AB的作用力为 44 4 选直角弯杆AB为研究对象 其受力如图示 解得 45 例21图示一结构由AB BC与CE三个构件构成 E处有一滑轮 细绳通过该轮悬挂一重为1 2kN的重物 尺寸如图 不计杆件与滑轮的重量 求支座A和B处的约束反力 以及杆BC的内力FBC 解 1 选整体为研究对象 其受力如图所示 46 2 取ADB杆为研究对象 其受力如图所示 解得 式中r为轮的半径 细绳拉力F P 解得 47 48 2 7平面简单桁架的内力计算 桁架是一种由细长杆在其两端用铰链连接而成的结构 几何形状不变 如果桁架所有杆件的轴线与其受到的载荷均在一个平面内 称此类桁架为平面桁架 否则称为空间桁架 本节的研究对象为平面桁架 49 1 平面桁架的静力学模型 50 2 简单平面桁架的构成 51 3 桁架的内力计算 52 例22平面悬臂桁架所受的载荷如图所示 求各杆的内力 解 1 选节点E为研究对象 受力图如图 b 2 选节点C为研究对象 受力图如图 c 53 3 选节点D为研究对象 受力图如图 d 54 例23平面悬臂桁架所受的载荷如图 a 所示 求杆1 2 3的内力 解 1 用I I截面将桁架截开 取桁架右半部为研究对象 其受力图如图 b 所示 2 选节点E为研究对象 受力图如图 c 所示 55 例24如图所示桁架 F 5kN b 1 5m 求杆1 2和6的内力 解 1 以桁架整体为对象 计算支座的约束反力 56 2 计算杆1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红木家具修复与品牌授权合作协议
- 宠物寄养中心全面运营管理承包协议
- 文化活动广告创意策划执行及合作推广协议
- 股权结构调整及重组协议
- 医院科研经费管理补充协议
- 高效节能工业废气在线监测设备维护补充协议
- 国际化信息技术专利许可及全球运营支持合同
- 地下综合管廊PPP项目施工、运营及市场调研合同
- 葡萄酒品鉴会场地安保与合同服务协议
- 基础设施建设项目法律认证补充服务协议
- 社区矫正人员心理健康教育讲座
- 测量员培训试题及答案
- 财富顾问理论考试题库(含答案)
- 职场沟通职场沟通与人际关系处理知到课后答案智慧树章节测试答案2025年春山东管理学院
- 二项式定理专项训练解析版
- 智慧树知到《运动生理学(湖南师范大学)》2025章节测试附答案
- 智网招聘面试题及答案
- 电商客服岗转正述职报告
- 标准实施情况报告
- 农业安全问题
- 导管护理相关知识
评论
0/150
提交评论