1.2.1函数的概念1,2wkd.ppt_第1页
1.2.1函数的概念1,2wkd.ppt_第2页
1.2.1函数的概念1,2wkd.ppt_第3页
1.2.1函数的概念1,2wkd.ppt_第4页
1.2.1函数的概念1,2wkd.ppt_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 2 1函数的概念 复习提问 1 初中所学的函数的概念是什么 在一个变化过程中有两个变量x和y 如果对于x的每一个值 y都有唯一的值与对应 那么就说y是x的函数 其中x叫做自变量 复习提问 1 初中所学的函数的概念是什么 在一个变化过程中有两个变量x和y 如果对于x的每一个值 y都有唯一的值与它对应 那么就说y是x的函数 其中x叫做自变量 复习提问 2 初中学过哪些函数 1 初中所学的函数的概念是什么 复习提问 正比例函数 反比例函数 一次函数 二次函数等 1 初中所学的函数的概念是什么 在一个变化过程中有两个变量x和y 如果对于x的每一个值 y都有唯一的值与它对应 那么就说y是x的函数 其中x叫做自变量 2 初中学过哪些函数 示例1 一枚炮弹发射后 经过26s落到地面击中目标 炮弹的射高为845m 且炮弹距地面的高度h 单位 m 随时间t 单位 s 变化的规律是h 130t 5t2 新课 若炮弹飞行了2秒 你能算出炮弹距地面的高度吗 示例2 近几十年来 大气层中的臭氧迅速减少 因而出现了臭氧层空洞问题 下图中的曲线显示了南极上空臭氧层空洞的面积从1979 2001年的变化情况 你能从图像上看出 1993年 南极臭氧层空洞的面积吗 示例3 国际上常用恩格尔系数反映一个国家人民生活质量的高低 恩格尔系数越低 生活质量越高 下表中恩格尔系数随时间 年 变化的情况表明 八五 计划以来 我国城镇居民的生活质量发生了显著变化 八五 计划以来我国城镇居民恩格尔系数变化情况 一枚炮弹发射 经过26s落到地面击中目标 炮弹的射高为845m 且炮弹距地面的高度h 单位 m 随时间t 单位 s 变化的规律是h 130t 5t2 在上述三个例子中 是否确定了函数关系 为什么 在上述的每一个问题中都含有两个变量 当一个变量的取值确定后 另一个变量的值随之惟一确定 每一个问题确定了一个函数关系 一枚炮弹发射 经过26s落到地面击中目标 炮弹的射高为845m 且炮弹距地面的高度h 单位 m 随时间t 单位 s 变化的规律是h 130t 5t2 能否用集合与对应的语言来阐述这三个问题的共同特点 1 定义 形成概念 设A B是非空的数集 如果按照某个确定的对应关系f 使对于集合A中的任意一个数x 在集合B中都有唯一确定的数f x 和它对应 那么就称f A B为从集合A到集合B的一个函数 1 定义 形成概念 设A B是非空的数集 如果按照某个确定的对应关系f 使对于集合A中的任意一个数x 在集合B中都有唯一确定的数f x 和它对应 那么就称f A B为从集合A到集合B的一个函数 记作 y f x x A 1 定义 形成概念 其中 x叫做自变量 1 定义 其中 x叫做自变量 x的取值范围A叫做函数的定义域 1 定义 其中 x叫做自变量 x的取值范围A叫做函数的定义域 与x值相对应的y的值叫做函数值 1 定义 其中 x叫做自变量 x的取值范围A叫做函数的定义域 与x值相对应的y的值叫做函数值 函数值的集合 f x x A 叫做函数的值域 1 定义 2 函数的三要素 定义域A 值域 f x x R 对应法则f 2 函数的三要素 定义域A 值域 f x x R 对应法则f 2 函数的三要素 2 f表示对应法则 不同函数中f的具体含义不一样 函数符号y f x 表示y是x的函数 f x 不是表示f与x的乘积 例1结合函数的定义 判断下列对应是不是从数集A到数集B的函数 1 4 3 2 A B f 1 2 2 4 3 6 8 集合B和值域是什么关系 该函数的值域是什么 例2 例2 例3在下列图象中 请指出哪一个是函数图象 哪一个不是 并说明理由 x x x x y y y y o o o o 1 2 3 4 在掌握函数概念时 应特别注意 非空数集 对应法则 每一个 唯一 这几个关键词 y kx b k 0 R R a 0 a 0 R R x x 0 y y 0 f x kx b k 0 3 已学函数的对应关系 定义域和值域 设a b是两个实数 而且a b 我们规定 1 满足不等式a x b的实数x的集合叫做闭区间 表示为 a b 2 满足不等式a x b的实数x的集合叫做开区间 表示为 a b 3 满足不等式a x b或a x b的实数x的集合叫做半开半闭区间 表示为 a b 或 a b 4 区间的概念 学生自己阅读P17 这里的实数a与b都叫做相应区间的端点 例1 试用区间表示下列实集 x 5 x 6 2 x x 9 3 x x 1 x 5 x 2 4 x x 9 x 9 x 20 注意 用实心点表示包括在区间内的端点 用空心点表示不包括在区间内的端点 例题讲解 例2求下列函数的定义域 例3已知函数f x 3x2 5x 2 求f 3 例4 例3 例5下列各组中的两个函数是否为相同的函数 例4下列各组中的两个函数是否为相同的函数 定义域不同 例4下列各组中的两个函数是否为相同的函数 定义域不同 定义域不同 例4下列各组中的两个函数是否为相同的函数 定义域不同 定义域 值域都不同 定义域不同 教材P 19练习第1 2 3题 课堂练习 课堂小结 1 函数定义域的求法 2 判断函数是否为同一函数的方法 3 求函数值 课后作业 1 教材P 24习题1 2第1 2 6题 上交 2教材P 24习题1 2第4 5题 书上 练习纸函数的概念 一 必做题1 8 例2判断下列对应是不是数集A到数集B的一个函数 2 A B 0 x y y是x的算术平方根 1 A 1 2 3 4 5 B 2 4 6 8 y 2x 3 A 0 B R x y y是x的平方根 4 A 0 4 B 0 2 x y y x 例1若物体以速度v作匀速直线运动 则物体通过的距离S与经过的时间t的关系是S vt 下列例1 例2 例3是否满足函数定义 例2某水库的存水量Q与水深h 指最深处的水深 如下表 例3设时间为t 气温为T 自动测温仪测得某地某日从凌晨0点到半夜24点的温度曲线如下图 注意 1 当f x 是整式时 函数的定义域R 2 当f x 是分式时 函数的定义域是使分母不等于0的x的集合 3 当f x 是二次根式 以后学习的n次根式中的偶次根式时 函数的定义域是使根式不小于0的x的集合 4 当f x 是有几个部分的数学式子构成时 函数的定义域是使各个部分式子都有意义的x的集合 解题时要注意书写过程 注意紧扣函数定义域的含义 由本例可知 求函数的定义域就是根据使函数式有意义的条件 自变量应满足的不等式或不等式组 解不等式或不等式组就得到所求的函数的定义域 强调 若f x 是整式 则函数的定义域是实数集R 若f x 是分式 则函数的定义域是使分母不等于0的实数集 若f x 是二次根式 则函数的定义域是使根号内的式子大于或等于0的实数集合 强调 求用解析式y f x 表示的函数的定义域时 常有以下几种情况 若f x 是由几个部分的数学式子构成的 则函数的定义域是使各部分式子都有意义的实数集合 若f x 是由实际问题抽象出来的函数 则函数的定义域应符合实际问题 强调 解题时要注意书写过程 注意紧扣函数定义域的含义 由本例可知 求函数的定义域就是根据使函数式有意义的条件 自变量应满足的不等式或不等式组 解不等式或不等式组就得到所求的函数的定义域 强调 若f x 是整式 则函数的定义域是实数集R 若f x 是分式 则函数的定义域是使分母

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论