阶线性微分方程解得结构.ppt_第1页
阶线性微分方程解得结构.ppt_第2页
阶线性微分方程解得结构.ppt_第3页
阶线性微分方程解得结构.ppt_第4页
阶线性微分方程解得结构.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二阶线性微分方程 第四节 二 线性齐次方程解的结构 三 线性非齐次方程解的结构 一 二阶线性微分方程举例 第八章 一 二阶线性微分方程举例 当重力与弹性力抵消时 物体处于平衡状态 例1 质量为m的物体自由悬挂在一端固定的弹簧上 力作用下作往复运动 解 阻力的大小与运动速度 下拉物体使它离开平衡位置后放开 若用手向 物体在弹性力与阻 取平衡时物体的位置为坐标原点 建立坐标系如图 设时刻t物位移为x t 1 自由振动情况 弹性恢复力 物体所受的力有 虎克定律 成正比 方向相反 建立位移满足的微分方程 据牛顿第二定律得 则得有阻尼自由振动方程 阻力 2 强迫振动情况 若物体在运动过程中还受铅直外力 则得强迫振动方程 求讨论上抛高度h与时间t的关系 例2 空气的阻力与物体运动的速度成正比 比例系数为k 解 如右图建立坐标轴 h轴 正向朝上 设物体在时刻t的高度为h t 在时刻t受到两个 由牛顿第二定律知 力的作用 其一为重力 mg 其二为空气阻力 kv 由导数的物理意义知 以初速度垂直上抛一质量为m的物体 如果 从而得到h t 满足的方程 n阶线性微分方程的一般形式为 方程的共性 二阶线性微分方程 例1 例2 可归结为同一形式 时 称为非齐次方程 时 称为齐次方程 复习 一阶线性方程 通解 非齐次方程特解 齐次方程通解Y 证毕 二 二阶线性齐次方程解的结构 是二阶线性齐次方程 的两个解 也是该方程的解 证 代入方程左边 得 叠加原理 定理1 说明 不一定是所给二阶方程的通解 例如 是某二阶齐次方程的解 也是齐次方程的解 并不是通解 但是 则 为解决通解的判别问题 下面引入函数的线性相关与 线性无关概念 定义 是定义在区间I上的 n个函数 使得 则称这n个函数在I上线性相关 否则称为线性无关 例如 在 上都有 故它们在任何区间I上都线性相关 又如 若在某区间I上 则根据二次多项式至多只有两个零点 必需全为0 可见 在任何区间I上都线性无关 若存在不全为0的常数 两个函数在区间I上线性相关与线性无关的充要条件 线性相关 存在不全为0的 使 线性无关 常数 思考 中有一个恒为0 则 必线性 相关 证明略 线性无关 定理2 是二阶线性齐次方程的两个线 性无关特解 数 是该方程的通解 例如 方程 有特解 且 常数 故方程的通解为 自证 推论 是n阶齐次方程 的n个线性无关解 则方程的通解为 则 三 二阶线性非齐次方程解的结构 的两个特解 则 定理3 是相应的齐次方程 设是二阶非齐次方程 的一个特解 是二阶非齐次方程 的一个特解 Y x 是相应齐次方程的通解 定理4 则 是非齐次方程的通解 证 将 代入方程 左端 得 是非齐次方程的解 又Y中含有 两个独立任意常数 例如 方程 有特解 对应齐次方程 有通解 因此该方程的通解为 证毕 因而 也是通解 定理5 是对应齐次方程的n个线性 无关特解 给定n阶非齐次线性方程 是非齐次方程的特解 则非齐次方程 的通解为 齐次方程通解 非齐次方程特解 常数 则该方程的通解是 设线性无关函数 都是二阶非齐次线 性方程 的解 是任意 例3 提示 都是对应齐次方程的解 二者线性无关 反证法可证 例4 已知微

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论