阶线性微分方程(57).ppt_第1页
阶线性微分方程(57).ppt_第2页
阶线性微分方程(57).ppt_第3页
阶线性微分方程(57).ppt_第4页
阶线性微分方程(57).ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一阶线性微分方程 一 一阶齐次线性方程 二 一阶非齐次线性方程 标准形式 齐次 一阶线性微分方程 例如 线性的 非线性的 非齐次 4 齐次方程的通解为 1 一阶线性齐次方程 一 一阶线性齐次微分方程的解法 2 分离变量 3 两边积分得 解 故该一阶齐线性方程的通解为 套公式 解 先求此一阶齐线性方程的通解 故该初值问题的解为 二 一阶非齐线性方程的解 比较两个方程 请问 你有什么想法 请问 你有什么想法 行吗 故 即 上式两边积分 求出待定函数 对应齐次方程通解 非齐次方程特解 方法一 常数变易法 例1 解 1 先求对应的齐次方程的通解 再把上式代入 1 式 即得所求方程的通解为 方法二 公式法 解 所以 方程的通解为 解 例3 解 原方程可以改写为 这是一个以y为自变量的一阶非齐线性方程 其中 故原方程的通解为 例4 视x为y函数 可化成线性方程 通解为 例5 两边求导得 解 解此微分方程 所求曲线为 例6 解 由回路电压定律得出 2 3 方程 2 是一个非齐次线性方程 应用分部积分法 得 可以先求出对应的齐次方程的通解 然后用常数变易法求非齐次方程的通解 也可以直接应用通解公式来求解 将上式代入前式并化简 得方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论