




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆 通法 特法 妙法(1)解析法解析几何存在的理由解析法的实质是用代数的方法学习和研究几何.在解析几何的模式下,平面上任意一条曲线都唯一对应着一个二元方程.反之,根据任意一个二元方程,都可以用描点法唯一地画出它所对应的曲线.因此,可以将几何问题转化为解方程、方程组或不等式.【例4】点P(x,y)在椭圆上,则的最大值为 ( )A.1 B.-1 C. D. 【解析】设方程(1)表示过椭圆上一点P(x,y)和原点的直线.显然当直线在椭圆上方且与椭圆相切时,最大.将方程(1)代入椭圆方程得: 由于直线与椭圆相切,故方程(2)应有相等二实根.由.k0,取,选D.【评注】直线与曲线相切的解析意义是相应的一元二次方程有相等二实根,因而可转化为其判别式为零处理;同理,直线与曲线相交要求相应的判别式大于零,相离则要求这个判别式小于零. (2)导数法把方程与函数链接由于解析法往往牵涉到比较繁杂的运算,所以人们在解题中研究出了许多既能减少运算,又能达到解题目的的好方法,导数法就是最为明显的一种.【例5】求证:过椭圆上一点的切线方程为:.【证明一】(解析法)设所求切线方程为:,代入椭圆方程:.化简得:直线与椭圆相切,方程(1)有相等二实根.其判别式=0,即:.化简得:点在椭圆上,方程(2)之判别式.故方程(2)亦有相等二实根,且其根为:.则切线方程为:.再化简即得:.【证明二】(导数法)对方程两边取导数:.则切线方程为:.再化简即得:.【评注】(1)两种证法的繁简相差多大,一看便知(2)这个切线方程的实际意义很大.在有关运算中直接引用这个公式是十分省事的.(3)几何法为解析法寻根朔源减少解析计算的又一个重要手段,是在解题中充分运用平面几何知识.【例6】(07.湖南文科.9题)设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )A B C D【解析】如图有,设右准线交x轴于H,选D.【例7】已知椭圆和圆总有公共点,则实数的取值范围是 ( )【解析】如右图椭圆的中心在原点,且长、短半轴分别为a=2,b=1;圆的圆心为C(a,0)且半径R=1.显然,当圆C从椭圆左边与之相切右移到椭圆右边与之相切时都有公共点.此时圆心的横坐标由-3增加到3,故a,选C.在解析几何解体中引入平面几何知识包含两个重要方面,一是恰当地运用平面几何知识及其推理功能,二是利用图形变换去进行数量的分析与计算.(4)转移法将生疏向熟知化归做数学题如果题题都从最原始的地方起步,显然是劳神费力且违反数学原则的.不失时机地运用前此运算成果就成为数学思想的本质特点.而转移法正是这一思想的具体体现.【例8】(06.全国一卷.20题)在平面直角坐标系中,有一个以和为焦点,离心率为的椭圆.设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与x,y轴的交点分别为A,B且向量OM=OA+OB.试求点M的轨迹方程【分析】点P在已知轨迹(椭圆在第一象限的部分)上,是主动点;点M在未知轨迹上,且随着点P的运动而运动,是被动点.故本例是典型的国际已知轨迹求未知轨迹,适合用坐标转移法解之.此外,过椭圆上一点P的切线方程,可以直接运用例5的结论.【解析】椭圆的半焦距,离心率.又椭圆的焦点在y轴上,故其方程为:. 设点P的坐标为那么过点P的椭圆切线方程为:在方程(2)中,令y=0,得.设点M的坐标为.由OM=OA+OB,代入(1):.,所求点M的轨迹方程是:.转移法求轨迹方程的基本步骤是:(1)在已知轨迹上任取一点M(x0,y0),并写出其满足的已知关系式;(2)设P(x,y)为待求轨迹上一点,并根据题设条件求出两个坐标的关系式;(3)用x,y的代数式分别表示x0,y0,代入(1)中的关系式化简即得.(5)三角法与解析法珠联璧合三角学的资源丰富,方法灵活.在解析几何解题中适当引入三角知识,优点多多.例如椭圆方程的三角形式是:,既将点的坐标中的两个变量减少为一个,又可以利用三角的优势去解决解析几何中的疑难.【例9】若P是椭圆上的点,F1和F2是焦点,则的最大值和最小值分别是【解析】椭圆的长、短半轴分别为a=2,b=,半焦距c=1.焦点坐标分别为:F1(-1,0),F2(1,0).设椭圆上一点为,那么.同理;.于是故所求最大值为4,最小值是3.【例10】如图1,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x = 12。(1)求椭圆的方程;(2)在椭圆上任取三个不同点,使,证明为定值,并求此定值.【分析】本题选自07.重庆卷.22题,是压轴题.难度很大.动手前一定要选择好恰当的破题路径,否则将陷入繁杂的计算而不得自拔. 有关的3条线段都是焦半径,企图用椭圆的第一定义或两点距离公式出发将是徒劳的.正确 的解题途径是:(1)利用椭圆的第二定义;(2)题中有3个相等的角度,应不失时机地引入三角知识.【解析】椭圆的半焦距c=3,右准线x = 12图2.故椭圆方程为:,其离心率.如图2设为椭圆上符合条件的三点,令.作P1H1于H1,令,设P1Fx=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计逻辑测试题及答案
- 大学语文群文阅读阶段性工作总结
- 上岗培训流程
- 外币反假培训
- 2025年中国磨刀棒行业市场全景分析及前景机遇研判报告
- 儿科危重症专科护士培训汇报
- 产后母婴护理教程
- 机打发票培训
- 转正制度培训
- 旅游度假村场地合作运营协议
- 2025年社区工作者考试题目及答案
- 跨国知识产权争议的司法解决途径
- DIP支付下的病案首页填写
- 应急管理部门职工招聘合同
- 2025年教师招聘教师资格面试逐字稿初中体育教师招聘面试《排球正面双手垫球》试讲稿(逐字稿)
- 2024北京海淀初一(上)期中数学试卷及答案解析
- 2023年贵州贵州贵安发展集团有限公司招聘笔试真题
- 2025年中学教师综合素质考点梳理
- 神经内科常见药物及管理
- 2025版国家开放大学法学本科《国际私法》历年期末纸质考试案例题题库
- 【MOOC】中医诊断学-福建中医药大学 中国大学慕课MOOC答案
评论
0/150
提交评论