空间向量与立体几何练1.doc_第1页
空间向量与立体几何练1.doc_第2页
空间向量与立体几何练1.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间向量与立体几何练习:(一)参考答案1FyEMxzD1C1B1A1CDBA证明:如图建立空间直角坐标系, 则(1,1,0),(1,0,1) (1,0,1), (0,1,1)设,(、 ,且均不为0) 设、分别是平面A1EF与平面B1MC的法向量, 由 可得 即 解得:(1,1,1) 由 可得 即 解得(1,1,1),所以, , 所以平面A1EF平面B1MC注:如果求证的是两个平面垂直,也可以求出两个平面的法向量后,利用来证明2.(1)证明:PA平面ABCD,PAAB,又ABADAB平面PAD又AEPD,PD平面ABE,故BEPD(2)解:以A为原点,AB、AD、AP所在直线为坐标轴,建立空间直角坐标系,则点C、D的坐标分别为(a,a,0),(0,2a,0)PA平面ABCD,PDA是PD与底面ABCD所成的角,PDA=30于是,在RtAED中,由AD=2a,得AE=a过E作EFAD,垂足为F,在RtAFE中,由AE=a,EAF=60,得AF=,EF=a,E(0,a)于是,=a,a,0设与的夹角为,则由cos=AE与CD所成角的余弦值为评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段3解:(1)如图,建立空间直角坐标系Dxyz,则知B(1,1,0),设得则令设点A1在平面BDFE上的射影为H,连结A1D,知A1D是平面BDFE的斜线段即点A1到平面BDFE的距离为1(2)由(1)知,A1H=1,又A1D=,则A1HD为等腰直角三角形,19解:建立坐标系如图,则、,A1B1C1D1ABCDExyz,()不难证明为平面BC1D的法向量, D1E与平面BC1D所成的角的余弦值为()、分别为平面BC1D、BC1C的法向量, , 二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论