




已阅读5页,还剩55页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
命题预测 1 有关圆锥曲线的选择题 填空题仍将注重对圆锥曲线的定义 标准方程 焦点坐标 准线方程 离心率 渐近线等基本知识 基本技能及基本方法的考查 以容易题为主 2 作为解答题考查本章内容时 通常为一道解析几何综合题 重点考查直线与圆锥曲线的位置关系 求曲线的轨迹方程 关于圆锥曲线的定值 最值问题 求圆锥曲线中参数的取值范围问题等 3 热点问题是用待定系数法求曲线方程 动点的轨迹及直线与圆锥曲线的位置关系等 4 特别提醒注意在知识交汇点命题 可能是一道以平面向量为载体的综合题或以平面几何图形为背景 构建轨迹方程的探索性问题 着重考查数形结合 等价转化等数学思想方法 备考指南 1 注重 三基 训练 重点掌握椭圆 双曲线 抛物线的定义和性质 要善于多角度 多层次思考问题 不断巩固和强化 三基 使知识得以深化和升华 2 突出主体内容 要以高考试题为标准 紧紧围绕解析几何的两大任务来复习 即根据已知条件求曲线的方程和通过方程研究圆锥曲线的性质 其中求曲线的方程是重点 所以要熟练掌握求曲线方程的一般方法 直接法 定义法 待定系数法 相关点法 参数法等 3 关注 热点 问题 直线与圆锥曲线的位置关系问题一直是高考命题的热点 这类问题常涉及圆锥曲线的性质和直线的基本知识点 分析问题时要注意数形结合思想和设而不求的思想以及弦长公式 一元二次方程根的判别式和根与系数的关系的熟练应用 4 重视对数学思想方法的归纳提炼 实现优化解题思维 简化解题过程 本章复习中要特别重视函数方程思想 数形结合思想以及坐标法的渗透作用 5 着力抓好 运算关 解析几何问题的解题思路容易分析出来 但往往由于运算不过关而半途而废 因此 在复习中要注意寻求合理的运算方案 以及简化运算的基本途径与方法 亲身经历运算困难的发生与克服困难的完整过程 增强解决复杂问题的信心 基础知识一 椭圆的定义和方程1 椭圆定义 1 平面内到两定点f1 f2的距离的和等于的点的轨迹叫椭圆 这两个定点叫做椭圆的焦点 两焦点的距离叫做椭圆的焦距 2 平面内到定点f的距离和到定直线l的距离d之比为的点m的轨迹叫做椭圆 即 常数 大于 f2f2 常数e 0 e 1 定点是椭圆的一个焦点 定直线是椭圆的相应准线 2 椭圆的方程 1 焦点在x轴上的椭圆的标准方程 2 焦点在y轴上的椭圆的标准方程 3 一般表示 二 椭圆的简单几何性质 a2 b2 c2 a ex0 a ex0 a ey0 a ey0 易错知识一 椭圆的定义失误1 1 已知f1 4 0 f2 4 0 到f1 f2两点的距离之和等于8的点的轨迹是 答案 线段f1f2 2 已知f1 4 0 f2 4 0 到f1 f2两点的距离之和为6的点的轨迹是 答案 不存在 3 到点f1 4 0 f2 4 0 两点的距离之和等于点m 5 3 到f1 f2的距离之和的点的轨迹是 答案 椭圆 二 忽视焦点的位置产生的混淆2 中心在原点 对称轴为坐标轴 离心率为 长轴为8的椭圆方程为 3 已知椭圆的离心率则k 解题思路 由于椭圆的焦点位置不确定 应分两种情况进行讨论 1 当椭圆的焦点在x轴上时 a2 k 8 b2 9 c2 a2 b2 k 8 9 k 1 2 当椭圆的焦点在y轴上时 a2 9 b2 k 8 c2 1 k 故满足条件的k 28或k 失分警示 知识不全 考虑问题不全面 易漏解 或者错记成c2 a2 b2而导致运算出错 三 忽视条件产生错误4 如图所示 abc中 a b c所对的三边分别为a b c 且b 1 0 c 1 0 求满足b a c 且b a c 成等差数列时 顶点a的轨迹方程 解题思路 b a c成等差数列 b c 2a 2 2 4 即 ab ac 4 动点a x y 符合椭圆的定义 且椭圆方程中的 a点的轨迹方程是由于b c 即 ac ab 可知a点轨迹是椭圆左半部 还必须除去点所以所求轨迹方程为 失分警示 忽视了点a 点b与点c构成三角形和b a c条件致误 回归教材1 2009 陕西 7 m n 0 是 方程mx2 ny2 1表示焦点在y轴上的椭圆 的 a 充分而不必要条件b 必要而不充分条件c 充要条件d 既不充分也不必要条件 解析 把椭圆方程化成若m n 0 则0 所以椭圆的焦点在y轴上 反之 若椭圆的焦点在y轴上 即有m n 0 故选c 答案 c 2 教材p1142题改编 椭圆25x2 16y2 1的焦点坐标为 解析 椭圆方程可化为 椭圆的焦点在y轴上且c2 故选d 答案 d 3 设f1 f2是椭圆的焦点 p为椭圆上一点 则 pf1f2的周长为 a 16b 18c 20d 不确定解析 由椭圆定义 pf1 pf2 10 f1f2 8 故 pf1 pf2 f1f2 18 故选b 答案 b 4 若椭圆的长轴长是短轴长的2倍 椭圆经过点p 2 0 则椭圆的标准方程为 解析 由题意知若a 2 则焦点在x轴上 b 1 方程为若b 2 则焦点在y轴上 a 4 方程为综上可知 方程为答案 c 5 若椭圆的短轴长为6 焦点f到长轴的一个端点的距离等于9 则椭圆的离心率e 解析 b 3 a c 9 又 b2 a2 c2 a c a c 9 则a c 1 a 5 c 4 例1 求适合下列条件的椭圆的标准方程 1 两个焦点的坐标分别是 12 0 12 0 椭圆上一点p到两焦点的距离的和等于26 2 焦点在坐标轴上 且经过点a和b 3 焦距是2 且过点 分析 根据题意 先判断椭圆的焦点位置 后设椭圆的标准方程 求出椭圆中的a b即可 若判断不出焦点在哪个坐标轴上 可采用标准方程的统一形式 解答 1 因为椭圆的焦点在x轴上 所以设它的标准方程为 2a 26 2c 24 a 13 c 12 b2 a2 c2 132 122 25 所求的椭圆标准方程为 2 方法一 若焦点在x轴上 设所求椭圆方程为由两点在椭圆上可得若焦点在y轴上 设所求椭圆方程为 同上可解得 不合题意 舍去 故所求的椭圆标准方程为 方法二 设所求椭圆方程为mx2 ny2 1 m 0 n 0 且m n 则椭圆的标准方程为 3 由已知得2c 2 c 1 当焦点在x轴上时当焦点在y轴上时 求满足下列各条件的椭圆的标准方程 1 短轴的一个端点与两焦点组成一个正三角形 且焦点到同侧顶点的距离为 2 经过点a 0 2 b 3 两点 3 与椭圆有相同离心率且经过点 2 所求椭圆的标准方程为 2 设经过两点a 0 2 的椭圆标准方程为mx2 ny2 1 将a b两点坐标代入得 所求椭圆标准方程为 3 由题意 设所求椭圆的方程为因为椭圆过点所以故所求椭圆标准方程为 例2 2009 东北三校 1 已知椭圆1 a b 0 f1 f2分别是其左 右焦点 a为椭圆的左顶点 过f2作垂直于x轴的一条直线交椭圆于b c两点 若 bac 则椭圆的离心率为 2 f1 f2是椭圆 a b 1 的左 右焦点 若椭圆上存在点p 使 f1pf2 90 则椭圆的离心率的取值范围是 探究 求椭圆离心率 即由题设建立一个含有a b c的等式 解析 1 如图 设c c y 代入椭圆方程又 af2 a c f2ac 2009 江西 6 过椭圆的左焦点f1作x轴的垂线交椭圆于点p f2为右焦点 若 f1pf2 60 则椭圆的离心率为 答案 b 解析 pf1 pf2 2a 又 f1pf2 60 pf1 2a pf2 在rt pf1f2中 pf1 2 f1f2 2 pf2 2 2009 重庆 15 已知椭圆的左 右焦点分别为f1 c 0 f2 c 0 若椭圆上存在点p使则该椭圆的离心率的取值范围为 答案 1 1 解析 在 pf1f2中 由正弦定理知又 p在椭圆上 pf1 pf2 2a 将 代入得 pf2 解答 由于椭圆方程为且a 3 b c 2 e 2a 6 1 如图 a 所示 过p向椭圆左准线作垂线 垂足为q则由椭圆第二定义知 从而 pa pf pa pq 显然 当a p q共线时 pa pq 最小 最小值为此时p 1 a 2 如图 b 设椭圆右焦点为f1 则 pf pf1 6 pa pf pa pf1 6 利用 af1 pa pf1 af1 当p a f1共线时等号成立 pa pf 6 pa pf 6 b 总结评述 一般地 遇到有关焦点 或准线 问题 首先应考虑用定义来解题 椭圆上的点到两焦点的距离考虑第一定义 椭圆上的点到焦点及到准线的距离考虑第二定义 2009 浙江温州十校联考 若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1 则椭圆长轴的最小值为 答案 d解析 易得bc 1 又 bc 长轴 2a 故选d 在平面直角坐标系xoy中 设p x y 是椭圆 y2 1上的一个动点 则s x y的最大值为 答案 c解析 本题主要考查曲线的参数方程的基本知识 考查运用参数方程解决数学问题的能力 方法一 因椭圆的参数方程为故可设动点p的坐标为 sin 其中0 2 因此 s x y sin 2 所以 当 时 s取得最大值2 方法二 将s x y看作直线x y s 0与椭圆 y2 1有公共点 即 x s 2 1 4x2 6sx 3s2 3 0因此 0即36s2 16 3s2 3 0 s2 4 2 s 2 故选c 例4 2009 陕西西安名校一模 已知椭圆 1的两个焦点分别是f1 f2 p是椭圆在第一象限的点 且满足过点p作倾斜角互补的两条直线pa pb 分别交椭圆于a b两点 1 求点p的坐标 2 求直线ab的斜率 2009 安徽 18 已知椭圆的离心率为以原点为圆心 椭圆短半轴长为半径的圆与直线y x 2相切 1 求a与b 2 设该椭圆的左 右焦点分别为f1和f2 直线l1过f2且与x轴垂直 动直线l2与y轴垂直 l2交l1于点p 求线段pf1的垂直平分线与l2的交点m的轨迹方程 并指明曲线类型 命题意图 本小题主要考查椭圆 抛物线的方程 点到直线的距离公式 直线与曲线的位置关系等基础知识 考查综合运用知识分析问题 解决问题的能力 2 解法一 由得f1 1 0 f2 1 0 设m x y 则p 1 y 由 mf1 mp 得 x 1 2 y2 x 1 2 y2 4x 此轨迹是抛物线 解法二 因为点m在线段pf1的垂直平分线上 所以 mf1 mp 即m到f1的距离等于m到l1的距离 此轨迹是以f1 1 0 为焦点 l1 x 1为准线的抛物线 轨迹方程为y2 4x 1 椭圆中任意一点m到焦点f的所有距离中 长轴端点到焦点的距离分别为最大距离和最小距离 且最大距离为a c 最小距离为a c 2 过焦点弦的所有弦长中 垂直于长轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中医药现代化国际市场拓展:奥地利市场前景报告
- 新能源汽车智能座舱2025年交互设计在车载智能充电系统中的应用报告
- 农发行上饶市万年县2025秋招数据分析师笔试题及答案
- 平移例3课件教学课件
- 2025年主题公园沉浸式体验设计在旅游目的地旅游产品升级中的应用报告
- 平煤集团安全礼仪培训课件
- 夜间飞行的秘密课件教学
- 2025年海洋能发电技术关键材料研发与应用研究报告
- 大专单招试卷真题及答案
- 注册消防真题及答案
- 2023年安康市交通建设投资集团有限公司招聘笔试题库及答案解析
- 农村厕所改建技术培训-三格化粪池式厕所课件
- 砖混框架房屋拆除专项施工方案
- 学生学习力评价量表
- 藏餐培训教学计划5篇
- 技术需求征集表
- 三年级上册美术课件-第1课 五星红旗我为你骄傲|辽海版
- 中职心理健康教育第一课-PPT课件
- 文化引领学校特色化课程体系的建构
- 安全现场文明施工措施费用清单
- 蓝色多瑙河(课堂PPT)
评论
0/150
提交评论