




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考前解析几何大题训练(1) 1.已知椭圆C: ()的离心率为 ,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.2.平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.3.设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.4.已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.考前解析几何大题训练(2)5.如图,已知椭圆:的上顶点为,离心率为. ()求椭圆的方程;()若过点作圆的两条切线分别与椭圆相交于点(不同于点).当变化时,试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.6.已知抛物线C1:x24y的焦点F也是椭圆C2:1(ab0)的一个焦点,C1与C2的公共弦的长为2.(1)求C2的方程(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向(i)若|AC|BD|,求直线l的斜率;(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,MFD总是钝角三角形7.已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围8.如图,在平面直角坐标系xOy中,已知椭圆1(ab0)的离心率为,且右焦点F到直线的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC2AB,求直线AB的方程考前解析几何大题训练(3)9.已知椭圆C:9x2y2m2(m0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由10.已知椭圆C:1(ab0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得OQMONQ?若存在,求点Q坐标;若不存在,说明理由11.平面直角坐标系xOy中,已知椭圆C:1(ab0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上(1)求椭圆C的方程(2)设椭圆E:1,P为椭圆C上任意一点过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求ABQ面积的最大值12.已知椭圆E:1(ab0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程考前解析几何大题训练(4)13.如图15所示,椭圆E:1(ab0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点当直线l平行于x轴时,直线l被椭圆E截得的线段长为2 .图15(1)求椭圆E的方程(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由14.已知椭圆y21上两个不同的点A,B关于直线ymx对称(1)求实数m的取值范围;(2)求AOB面积的最大值(O为坐标原点)图1615. 已知动点P(x,y)到直线l:x2的距离是它到定点F(1,0)的距离的倍(1)求动点P的轨迹C的方程;(2)过F(1,0)作与x轴垂直的直线与轨迹C在第三象限的交点为Q,过F(1,0)的动直线与轨迹C相交于不同的两点A,B,与直线l相交于点M,记直线QA,QB,QM的斜率依次为k1,k2,k3,试证明:为定值16.如图,已知椭圆的左、右顶点分别是,设点(),连接交椭圆于点,坐标原点是(1)证明:;(2)若四边形的面积是,求的值1.已知椭圆C: ()的离心率为 ,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.由已知,又, 解得椭圆的方程为.方法一:设椭圆上一点,则.直线:,令,得.直线:,令,得.将代入上式得故为定值.2.平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.(I)求椭圆C的方程;(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.【解析】() 由离心率是,有,又抛物线的焦点坐标为,所以,于是,所以椭圆的方程为() (i)设点坐标为,由得,所以在点处的切线的斜率为,因此切线的方程为,设,将代入,得于是,又,于是直线的方程为联立方程与,得的坐标为所以点在定直线上(ii)在切线的方程为中,令,得,即点的坐标为,又,所以; 再由,得于是有 令,得当时,即时,取得最大值此时,所以点的坐标为所以的最大值为,取得最大值时点的坐标为3.设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解析】()因为,故,所以,故.又圆的标准方程为,从而,所以.由题设得,由椭圆定义可得点的轨迹方程为:().4.已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.(第19题图)5.如图,已知椭圆:的上顶点为,离心率为. ()求椭圆的方程;()若过点作圆的两条切线分别与椭圆相交于点(不同于点).当变化时,试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.6.已知抛物线C1:x24y的焦点F也是椭圆C2:1(ab0)的一个焦点,C1与C2的公共弦的长为2.(1)求C2的方程(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向(i)若|AC|BD|,求直线l的斜率;(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,MFD总是钝角三角形解:(1)由C1:x24y知其焦点F的坐标为(0,1)因为F也是椭圆C2的一个焦点,所以a2b21.又C1与C2的公共弦的长为2,C1与C2都关于y轴对称,且C1的方程为x24y,由此易知C1与C2的公共点的坐标为,所以1.联立,得a29,b28,故C2的方程为1.(2)如图所示,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)(i)因为与同向,且|AC|BD|,所以,从而x3x1x4x2,即x1x2x3x4,于是(x1x2)24x1x2(x3x4)24x3x4.设直线l的斜率为k,则l的方程为ykx1.由得x24kx40,而x1,x2是这个方程的两根,所以x1x24k,x1x24.由得(98k2)x216kx640.而x3,x4是这个方程的两根,所以x3x4,x3x4.将代入,得16(k21),即16(k21),所以(98k2)2169,解得k,即直线l的斜率为.(ii)证明:由x24y得y,所以C1在点A处的切线方程为yy1(xx1),即y.令y0,得x,即M,0,所以,1.而(x1,y11),于是y1110,因此AFM是锐角,从而MFD180AFM是钝角故直线l绕点F旋转时,MFD总是钝角三角形7.已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解:(1)由已知有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或xc.因为点M在第一象限,所以M的坐标为c,c.由|FM|,解得c1,所以椭圆的方程为1.(3)设点P的坐标为(x,y),直线FP的斜率为t,则t,即yt(x1)(x1),与椭圆方程联立消去y,整理得2x23t2(x1)26.又由已知,得t,解得x1或1x0.设直线OP的斜率为m,则m,即ymx(x0)与椭圆方程联立,整理可得m2.当x,1时,有yt(x1)0,于是m,得m,.当x(1,0)时,有yt(x1)0,因此mb0)的离心率为,且右焦点F到直线的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC2AB,求直线AB的方程解:(1)由题意,得,且c3,解得a,c1,则b1,所以椭圆的标准方程为y21.(2)当ABx轴时,AB,又CP3,不合题意当AB与x轴不垂直时,设直线AB的方程为yk(x1),A(x1,y1),B(x2,y2),将直线AB的方程代入椭圆方程,得(12k2)x24k2x2(k21)0,则x1,2,C点的坐标为,且AB.若k0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意,从而k0,故直线PC的方程为y,则P点的坐标为,从而PC.因为PC2AB,所以,解得k1,此时直线AB的方程为yx1或yx1.9.已知椭圆C:9x2y2m2(m0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由20解:(1)证明:设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入9x2y2m2,得(k29)x22kbxb2m20,故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk9.所以直线OM的斜率与l的斜率的乘积为定值(2)四边形OAPB能为平行四边形因为直线l过点,所以l不过原点且与椭圆C有两个交点的充要条件是k0,k3.由(1)得直线OM的方程为yx.设点P的横坐标为xP,由得x,即xP .将点的坐标代入(1)中l的方程得b,因此xM.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP2xM,于是2,解得k14,k24.因为k0,k3,所以当l的斜率为4或4时,四边形OAPB为平行四边形10.已知椭圆C:1(ab0)的离心率为,点P(0,1)和点A(m,n)(m0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q,使得OQMONQ?若存在,求点Q坐标;若不存在,说明理由解:(1)由题意得解得a22,故椭圆C的方程为y21,设M(xM,0)因为m0,所以1nb0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上(1)求椭圆C的方程(2)设椭圆E:1,P为椭圆C上任意一点过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求ABQ面积的最大值20解:(1)由题意知2a4,则a2,又,a2c2b2,可得b1,所以椭圆C的方程为y21.(2)由(1)知,椭圆E的方程为1,(i)设P(x0,y0),由题意知Q(x0,y0)因为y1,且1,即1,所以2,即2.(ii)设A(x1,y1),B(x2,y2)将ykxm代入椭圆E的方程,可得(14k2)x28kmx4m2160,由0,可得m2416k2,则有x1x2,x1x2,所以|x1x2|.因为直线ykxm与y轴交点的坐标为(0,m),所以OAB的面积S|m|x1x2|2.设t.将ykxm代入椭圆C的方程,可得(14k2)x28kmx4m240,由0,可得m214k2.由可知0b0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图17,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程图1720解:(1)过点(c,0),(0,b)的直线方程为bxcybc0,则原点O到该直线的距离d,由dc,得a2b2,解得离心率.(2)方法一:由(1)知,椭圆E的方程为x24y24b2.依题意,圆心M(2,1)是线段AB的中点,且|AB|.易知,AB与x轴不垂直,设其方程为yk(x2)1,代入得(14k2)x28k(2k1)x4(2k1)24b20.设A(x1,y1),B(x2,y2),则x1x2,x1x2.由x1x24,得4,解得k.从而x1x282b2.于是|AB|x1x2|.由|AB|,得,解得b23.故椭圆E的方程为1.方法二:由(1)知,椭圆E的方程为x24y24b2.依题意,点A,B关于圆心M(2,1)对称,且|AB|.设A(x1,y1),B(x2,y2),则x4y4b2,x4y4b2,两式相减并结合x1x24,y1y22,得4(x1x2)8(y1y2)0.易知AB与x轴不垂直,则x1x2,所以AB的斜率kAB.因此直线AB的方程为y(x2)1,代入得x24x82b20,所以x1x24,x1x282b2.于是|AB|x1x2|.由|AB|,得,解得b23.故椭圆E的方程为1.13.如图15所示,椭圆E:1(ab0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点当直线l平行于x轴时,直线l被椭圆E截得的线段长为2 .图15(1)求椭圆E的方程(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由解:(1)由已知得,点(,1)在椭圆E上,因此解得a2,b,所以椭圆E的方程为1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点如果存在定点Q满足条件,则有1,即|QC|QD|,所以Q点在y轴上,可设Q点的坐标为(0,y0)当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,)由,得,解得y01或y02,所以若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2)下面证明:对任意直线l,均有.当直线l的斜率不存在时,由上可知,结论成立当直线l的斜率存在时,可设直线l的方程为ykx1,A,B的坐标分别为(x1,y1),(x2,y2)联立得(2k21)x24kx20.其判别式(4k)28(2k21)0,所以x1x2,x1x2,因此2k.易知点B关于y轴对称的点B的坐标为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年吉林省高速公路集团有限公司公开招聘2人笔试参考题库附带答案详解
- 2025安徽蚌埠高新投资集团有限公司招聘7人笔试参考题库附带答案详解
- 2025四川成都交通投资集团有限公司招聘6人笔试参考题库附带答案详解
- 2025内蒙古能源集团智慧运维公司社会招聘(105人)笔试参考题库附带答案详解
- 2025中新建物流集团有限责任公司人员招聘(7人)笔试参考题库附带答案详解
- 2025上控(青岛)水务发展有限公司招聘相关人员4人(山东)笔试参考题库附带答案详解
- 2025年四川屏山县事业单位上半年考核招聘工作人员的笔试备考题库及答案详解1套
- 红色知识竞赛题及答案
- 2025年新能源电动汽车智能驾驶技术趋势报告
- 2025年储能技术在家用能源管理中的应用现状与市场分析报告
- 建筑幕墙知识培训课件
- 人教版高中地理必修第一册第一章宇宙中的地球第一节地球的宇宙环境练习含答案
- 星地激光通信技术-洞察分析
- 诊所中药饮片清单汇编
- 《室外管网工程施工》课件
- 餐饮外卖窗口改造方案
- 糖尿病足报告
- 国有企业战略使命评价制度
- 吊车施工专项方案
- 合规风险管理制度
- 病毒课件教学课件
评论
0/150
提交评论