已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一部分 专题五 第一讲 空间几何体的三视图、表面积及体积A组1如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD11,ABBCAA12,若此几何体的俯视图如图2所示,则可以作为其正视图的是( C )解析由直观图和俯视图知,正视图中点D1的射影是B1,所以正视图是选项C中的图形,A中少了虚线,故不正确2如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )A20B24C28D32解析该几何体是圆锥与圆柱的组合体,由三视图可知圆柱底面圆的半径r2,底面圆的周长c2r4,圆锥的母线长l4,圆柱的高h4,所以该几何体的表面积S表r2chcl416828,故选C3(文)一个几何体的三视图如图所示,则该几何体的体积为( A )A12 B122 C6 D4解析由三视图知,该几何体是一个组合体,由一个长方体挖去一个圆柱构成,长方体的长、宽高为4,3,1,圆柱底半径1,高为1,体积V43112112.(理)若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( B )A10 cm3 B20 cm3C30 cm3 D40 cm3解析由三视图知该几何体是四棱锥,可视作直三棱柱ABCA1B1C1沿平面AB1C1截去一个三棱锥AA1B1C1余下的部分VABCC1B1VABCA1B1C1VAA1B1C1435(43)520cm3.4某几何体的三视图如图所示,则该几何体的表面积为( B )A182 B20C20 D16解析由三视图可知,这个几何体是一个边长为2的正方体割去了相对边对应的两个半径为1、高为1的圆柱体,其表面积相当于正方体五个面的面积与两个圆柱的侧面积的和,即该几何体的表面积S45221120.故选B5(2018双鸭山一模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( A )A BC4 D2解析由已知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径RPD.则这个几何体的外接球的表面积为S4R24()2.6如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1EDF的体积为.解析利用三棱锥的体积公式直接求解VD1EDFVFDD1ESD1DEAB111.7已知E,F分别是矩形ABCD的边BC与AD的中点,且BC2AB2,现沿EF将平面ABEF折起,使平面ABEF平面EFDC,则三棱锥AFEC外接球的体积为.解析如图,平面ABEF平面EFDC,AFEF,所以AF平面ECDF,将三棱锥AFEC补成正方体ABCDFECD依题意,其棱长为1,外接球的半径R,所以外接球的体积VR3()3.8(文)如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若ABCB2,A1C,求三棱柱ABCA1B1C1的体积解析(1)取AB的中点O,连接OC,OA1,A1B因为CACB,所以OCAB由于ABAA1,BAA160,故AA1B为等边三角形,所以OA1AB因为OCOA1O,所以AB平面OA1C又A1C平面OA1C,故ABA1C(2)由题设知ABC与AA1B都是边长为2的等边三角形,所以OCOA1.又A1C,则A1C2OC2OA,故OA1OC因为OCABO,所以OA1平面ABC,OA1为三棱柱ABCA1B1C1的高又ABC的面积SABC.故三棱柱ABCA1B1C1的体积VSABCOA13.(理)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,ABBCAD,BADABC90.(1)证明:直线BC平面PAD;(2)若PCD的面积为2,求四棱锥PABCD的体积解析(1)证明:在平面ABCD内,因为BADABC90,所以BCAD又BC平面PAD,AD平面PAD,故BC平面PAD(2)如图,取AD的中点M,连接PM,CM.由ABBCAD及BCAD,ABC90得四边形ABCM为正方形,则CMAD因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD平面ABCDAD,所以PMAD,PM底面ABCD因为CM底面ABCD,所以PMCM.设BCx,则CMx,CDx,PMx,PCPD2x.如图,取CD的中点N,连接PN,则PNCD,所以PNx.因为PCD的面积为2,所以xx2,解得x2(舍去)或x2.于是ABBC2,AD4,PM2.所以四棱锥PABCD的体积V24.B组1(文)某三棱锥的三视图如图所示,则该三棱锥的体积为( D )A60 B30 C20 D10解析由三视图画出如图所示的三棱锥PACD,过点P作PB平面ACD于点B,连接BA,BD,BC,根据三视图可知底面ABCD是矩形,AD5,CD3,PB4,所以V三棱锥PACD35410.故选D(理)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( B )A3 B2 C2 D2解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱由三视图可知正方体的棱长为2,故SD2.故选B2(2018宜宾一模)三棱锥ABCD内接于半径为2的球O,BC过球心O,当三棱锥ABCD体积取得最大值时,三棱锥ABCD的表面积为( D )A64 B82C46 D84解析由题意,BC为直径,BCD的最大面积为424,三棱锥ABCD体积最大时,AO平面BCD,三棱锥的高为2,所以三棱锥ABCD的表面积为422284.3三棱锥PABC中,PA平面ABC且PA2,ABC是边长为的等边三角形,则该三棱锥外接球的表面积为( C )A B4 C8 D20解析由题意得,此三棱锥外接球即为以ABC为底面、以PA为高的正三棱柱的外接球,因为ABC的外接圆半径r1,外接球球心到ABC的外接圆圆心的距离d1,所以外接球的半径R,所以三棱锥外接球的表面积S4R28,故选C4某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为( B )A2 B2 C4 D2解析如图,四面体的直观图是棱长为2的正方体ABCDMNPQ中的三棱锥QBCN,且QB2,NCQNQC2,四面体QBCN各面的面积分别为SQBNSQBC222,SBCN222,SQCN(2)22,面积最大为2.5三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为( B )A2 B4 C D16解析由已知中的三视图可得SC平面ABC,且底面ABC为等腰三角形,在ABC中AC4,AC边上的高为2,故BC4,在RtSBC中,由SC4,可得SB4.6设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2.若它们的侧面积相等且,则的值是.解析设甲、乙两个圆柱的底面半径分别为r1,r2,高分别为h1,h2,则有2r1h12r2h2,即r1h1r2h2,又,则()2.7已知在直角梯形ABCD中,ABAD,CDAD,AB2AD2CD2,将直角梯形ABCD沿AC折叠成三棱锥DABC,当三棱锥DABC的体积取最大值时,其外接球的体积为.解析当平面DAC平面ABC时,三棱锥DABC的体积取最大值此时易知BC平面DAC,BCAD,又ADDC,AD平面BCD,ADBD,取AB的中点O,易得OAOBOCOD1,故O为所求外接球的球心,故半径r1,体积Vr3.8(文)如图,四边形ABCD为菱形,G为AC与BD的交点,BE平面ABCD(1)证明:平面AEC平面BED;(2)若ABC120,AEEC,三棱锥E_ACD的体积为,求该三棱锥的侧面积解析(1)证明:因为四边形ABCD为菱形,所以ACBD因为BE平面ABCD,所以ACBE.故AC平面BED又AC平面AEC,所以平面AEC平面BED(2)设ABx,在菱形ABCD中,由ABC120,可得AGGCx,GBGD.因为AEEC,所以在RtAEC中,可得EGx.由BE平面ABCD,知EBG为直角三角形,可得BEx.由已知得,三棱锥EACD的体积VEACDACGDBEx3.故x2.从而可得AEECED.所以EAC的面积为3,EAD的面积与ECD的面积均为. 故三棱锥EACD的侧面积为32.(理)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF平面ABCD,BF3,G和H分别是CE和CF的中点(1)求证:AC平面BDEF;(2)求证:平面BDGH/平面AEF;(3)求多面体ABCDEF的体积解析(1)证明:因为四边形ABCD是正方形,所以ACBD又因为平面BDEF平面ABCD,平面BDEF平面ABCDBD,且AC平面ABCD,所以AC平面BDEF.(2)证明:在CEF中,因为G、H分别是CE、CF的中点,所以GHEF,又因为GH平面AEF,EF平面AEF,所以GH平面AEF.设ACBDO,连接OH,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国物流秋招题库及答案
- 正式劳动协议劳动合同
- TCNPHARS 0003-2025 药品检验检测机构 光度检测技术鲎试剂质量标准
- 施工项目分包协议书
- 乘车免责协议书模板
- 柴房出租转让合同范本
- 服务器租用合同协议书
- 文具店购销合同范本
- 食堂委托授权合同范本
- 2026-2031年中国闪存存储器行业市场发展现状及投资前景预测报告
- 水电站消防培训课件
- 《项目的沟通管理》课件
- 桩基施工的方案
- GB/T 19494.2-2023煤炭机械化采样第2部分:煤样的制备
- GSV2.0反恐安全管理手册
- 桥梁承载能力评定
- 边坡稳定性计算书
- WS/T 509-2016重症监护病房医院感染预防与控制规范
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 教育个体功能
- 城镇污水处理厂现场核查
评论
0/150
提交评论