【学海导航】高三数学第一轮总复习 6.2 均值不等式课件.ppt_第1页
【学海导航】高三数学第一轮总复习 6.2 均值不等式课件.ppt_第2页
【学海导航】高三数学第一轮总复习 6.2 均值不等式课件.ppt_第3页
【学海导航】高三数学第一轮总复习 6.2 均值不等式课件.ppt_第4页
【学海导航】高三数学第一轮总复习 6.2 均值不等式课件.ppt_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章 不等式 6 2均值不等式 一 算术平均数与几何平均数定理1 若a 0 b 0 则称 为两个正数的算术平均数 称 为两个正数的几何平均数 2 如果a b为实数 那么a2 b2 2ab ab 当且仅当a b时取 号 3 如果a b为正实数 那么 当且仅当a b时取等号 如果a b为定值p 那么ab有最 值 为 如果ab为定值s 那么a b有最 值 为 这一结论称为均值定理 其应用的三个条件依次为 11 二 不等式恒成立问题不等式a f x 恒成立 f x max存在 12 不等式a f x 恒成立 f x min存在 13 大 小 一正 二定 三相等 a f x max a f x mix 盘点指南 大 小 一正 二定 三相等 11a f x max 12a f x min 若x y 且x y s xy p 则下列命题中正确的是 a 当且仅当x y时 s有最小值b 当且仅当x y时 p有最大值c 当且仅当p为定值时 s有最小值d 若s为定值 则当且仅当x y时 p有最大值解 由均值不等式易得答案为d d 若x y x y 4 则下列不等式中成立的是 解 故选b b 设a 0 b 0 则下列不等式中不成立的是 解法1 由于是选择题 可用特值法 如取a 4 b 1 代入各选项中的不等式 易判断不成立 解法2 可逐项使用均值不等式判断不等式成立 b 因为相乘得成立 c 因为又由得所以成立 d 因为 所以所以即不成立 故选d 1 今有一台坏天平 两臂长不等 其余均精确 有人说要用它称物体的重量 只需将物体放在左右托盘各称一次 则两次称量结果的和的一半就是物体的真实重量 这种说法对吗 并说明你的理由 解 不对 设左 右臂长分别是l1 l2 物体放在左 右托盘称得重量分别为a b 真实重量为g 题型1利用均值不等式比较代数式的大小 则由杠杆平衡原理有 l1 g l2 b l2 g l1 a 得g2 ab 所以 由于l1 l2 故a b 由均值不等式知说法不对 真实重量是两次称量结果的几何平均值 点评 本题考查均值不等式 杠杆平衡原理知识及分析问题 解决问题的能力 属跨学科 数学 物理 的创新问题 均值不等式应用的条件是 一正二定三相等 即两个数都为正数 两个数的和或积是定值 有相等的可取值 已知a b c都是正数 且a b c 1 求证 证明 因为所以同理 有所以但由于3a 2 1 所以上式不能取等号 所以 2 1 已知x 0 y 0 且求x y的最小值 2 已知x0 y 0 所以 题型2求函数或代数式的最值 当且仅当即y 3x时 上式等号成立 又所以x 4 y 12时 x y min 16 2 因为x0 所以当且仅当即x 1时 上式等号成立 故当x 1时 ymax 1 3 由2x 8y xy 0 得2x 8y xy 所以所以x y x y 10 10 2 10 2 2 18 当且仅当 即x 2y时取等号 又2x 8y xy 0 所以x 12 y 6 所以当x 12 y 6时 x y取最小值18 点评 第 2 小题是一类应用均值不等式求分式型函数的最值的题型 此类问题求解中注意变形配凑成两个正数的和式 或积式 且它们的积 或和 式为定值的形式 然后看能否有相等条件 若有再利用均值不等式得出函数的最值 若没有 则利用函数的单调性求解 第 1 3 小题可利用已知条件转化为 2 的形式 3 若对任意正实数x y 不等式恒成立 则a的最小值是 解 若不等式恒成立 则恒成立 所以因为所以当且仅当x y时取等号 所以a 故amin 题型3用均值不等式求解不等式中的恒成立问题 点评 求恒成立中的问题的方法比较多 本题利用的是分离变量法 即一边为所求参数a 另一边是其他参数的式子 然后求其式子的最值 从填空题的角度来思考 本题也可以利用对称式的特点取x y 1 由此猜想a的值 已知a b c r 求证 证明 因为所以同理 三式相加得 1 均值不等式具有将 和式 转化为 积式 及将 积式 转化为 和式 的放缩功能 2 a2 b2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论