




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二节函数的单调性与最大 小 值 1 理解函数的单调性 掌握判断一些简单函数的单调性的方法 2 学会运用函数图象研究函数的性质 感受应用函数的单调性解决问题的优越性 提高观察 分析 推理 创新的能力 1 函数的单调性 1 单调函数的定义 2 单调性 单调区间的定义若函数f x 在区间d上是或 则称函数f x 在这一区间上具有 严格的 单调性 叫做f x 的单调区间 2 函数的最值 增函数 减函数 区间d 1 下列说法正确的是 a 定义在 a b 上的函数f x 若存在x1 x2 有f x1 f x2 那么f x 在 a b 上为增函数b 定义在 a b 上的函数f x 若有无穷多对x1 x2 a b 使得当x1 x2时 有f x1 f x2 那么f x 在 a b 上为增函数c 若f x 在区间i1上为增函数 在区间i2上也为增函数 那么f x 在i1 i2上也一定为增函数d 若f x 在区间i上为增函数 且f x1 f x2 x1 x2 i 那么x1 x2 3 已知函数y f x 是定义在r上的增函数 则f x 0的根 a 有且只有一个b 有2个c 至多有一个d 以上均不对解析 f x 在r上是增函数 对任意x1 x2 r 若x1 x2 则f x1 f x2 反之亦成立 故若存在f x0 0 则x0只有一个 若对任意x r都无f x 0 则f x 0无根 答案 c 热点之一函数单调性的判定与证明用定义证明函数单调性的一般步骤 1 取值 即设x1 x2是该区间内的任意两个值 且x1 x2 2 作差 即f x2 f x1 或f x1 f x2 并通过通分 配方 因式分解等方法 向有利于判断差的符号的方向变形 3 定号 根据给定的区间和x2 x1的符号 确定差f x2 f x1 或f x1 f x2 的符号 当符号不确定时 可以进行分类讨论 4 判断 根据定义得出结论 思路探究 可根据定义 先设 1 x1 x2 1 然后作差 变形 定号 判断 也可以求f x 的导函数 然后判断f x 与零的大小关系 热点之二求函数的单调区间1 求函数的单调区间 1 利用已知函数的单调性 2 定义法 先求定义域 再利用单调性定义 3 图象法 如果f x 是以图象给出的或者f x 的图象易作出 可直接由图象的直观性写出它的单调区间 4 导数法 利用导函数取值的正负确定原函数的单调区间 2 求复合函数y f g x 的单调区间的步骤 1 确定定义域 2 将复合函数分解成基本初等函数 y f u u g x 3 分别确定这两个函数的单调区间 4 若这两个函数同增或同减 则y f g x 为增函数 若一增一减 则y f g x 为减函数 即 同增异减 课堂记录 1 依题意 可得当x 0时 y x2 2x 3 x 1 2 4 当x 0时 y x2 2x 3 x 1 2 4 由二次函数的图象知 函数y x2 2 x 3在 1 0 1 上是增函数 在 1 0 1 上是减函数 3 f x 3x2 30 x 33 3 x 11 x 1 当x11时 f x 0 f x 单调递增 当 1 x 11时 f x 0 f x 单调递减 f x 的递增区间是 1 11 递减区间 1 11 即时训练已知f x 8 2x x2 若g x f 2 x2 试确定g x 的单调区间和单调性 解法一 函数的定义域为r 分解基本函数为g x f t t2 2t 8和t 2 x2 显然g x f t t2 2t 8在 1 上单调递减 在 1 上单调递增 而t 2 x2在 0 0 上分别单调递增和单调递减 且2 x2 1 x 1 根据复合函数的单调性规则 所以函数的单调增区间为 1 0 1 单调减区间为 1 1 0 解法二 g x 8 2 2 x2 2 x2 2 x4 2x2 8 g x 4x3 4x 令g x 0 得x1或 1 x 0 所以g x 的单调增区间为 1 0 1 单调减区间为 1 1 0 热点之三利用函数的单调性 求参数的取值范围依据函数单调性的定义 对给定区间内的任意两个不相等的自变量对应的函数值作差 满足函数关系式的自变量必须在定义域内 这是一个容易被忽视的问题 通过构造关于参数的不等式进行求解 在求抽象函数中的参数的范围时 往往是利用函数的单调性将 f 符号脱掉 得到关于参数的等量关系或不等关系 热点之四函数的最值与值域求函数最值 值域 常用的方法和思路 1 单调性法 先定函数的单调性 再由单调性求最值 2 图象法 先作出函数在给定区间上的图象 再观察其最高 最低点 求出最值 3 基本不等式法 先对解析式变形 使之具备 一正二定三相等 的条件后用基本不等式求出最值 4 导数法 先求导 然后求在给定区间上的极值 最后结合端点值 求出最值 5 换元法 对较复杂的函数可通过换元转化为熟悉的函数 再用相应的方法求最值 思路探究 当x1 x2 2或2 x1 x2时 f x 递增 当 2 x1 x2 0或0 x1 x2 2时 f x 递减 故x 2时 f x 极大 f 2 4 x 2时 f x 极小 f 2 4 所求函数的值域为 4 4 函数无最值 故f x 的最小值为min f 2 f 3 而f 2 12 2 2 3 16 f 3 12 3 33 9 故函数的最小值为 16 答案 1 a 2 16 函数的单调性及函数最值是高中数学函数中的重要内容 是高考命题热点之一 从新课改省份的高考信息统计可以看出 考查呈以下特点 1 选择题 填空题 解答题 与导数结合 三种题型都有可能出现 2 考查形式主要体现为利用单调性定义 导数或常见函数的单调性及重要结论判断函数单调性 利用单调性比较函数值的大小 解决求函数最值或不等式恒成立问题 2 2009 海南 宁夏高考 用min a b c 表示a b c三个数中的最小值 设f x min 2x x 2 10 x x 0 则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年夏至节气知识竞赛测试题及答案
- 安徽省池州市江南中学2026届化学高二第一学期期中质量检测试题含解析
- 2025年传染病护理学试题(附答案)
- 古筝老师课件
- 2025年防灾减灾与应急救援题试题及答案
- 2025年幼儿园教师职业道德考试试题题库及答案
- 2025年职业危害及其预防试题及答案
- 2026届广东广州市化学高一第一学期期中教学质量检测模拟试题含解析
- 2025年收银员考试理论考试试题含答案
- 2025究竟恋爱多久才适合同居
- 高级政工师职称面试题
- 2022年HJ1237机动车环检作业指导书
- ISTA-3A(中文版)运输-试验标准
- 师德师风建设ppt课件、讲稿
- (手册)铁总建设2017310号铁路建设项目质量安全红线管理规定-21
- 军队文职招聘(司机岗)近年考试真题题库(含真题、典型题汇总)
- GA/T 383-2014法庭科学DNA实验室检验规范
- 2023年禁毒社工招聘考试试题
- 医院物业绿化服务方案
- (中职)美容美发实用英语unit1课件
- T∕UCST 009-2020 城市建设工程地下水回灌技术标准
评论
0/150
提交评论