【全套解析】高三数学一轮复习 74 直线、平面平行的判定及其性质课件 (理) 新人教A版.ppt_第1页
【全套解析】高三数学一轮复习 74 直线、平面平行的判定及其性质课件 (理) 新人教A版.ppt_第2页
【全套解析】高三数学一轮复习 74 直线、平面平行的判定及其性质课件 (理) 新人教A版.ppt_第3页
【全套解析】高三数学一轮复习 74 直线、平面平行的判定及其性质课件 (理) 新人教A版.ppt_第4页
【全套解析】高三数学一轮复习 74 直线、平面平行的判定及其性质课件 (理) 新人教A版.ppt_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四节直线 平面平行的判定及其性质 1 认识和理解空间中线面平行 面面平行的判定 2 认识和理解空间中线面平行 面面平行的性质 3 能运用线面 面面平行的判定定理和性质定理 证明一些空间图形的位置关系的简单命题 1 直线与平面平行的判定与性质 2 面面平行的判定与性质 1 已知直线a b 平面 满足a 则使b 的条件为 a b ab b a且b c a与b异面d a与b不相交解析 由线面平行的判定定理可知 由b a且b b 答案 b 2 若直线m 平面 则条件甲 直线l 是条件乙 l m的 a 充分不必要条件b 必要不充分条件c 充要条件d 既不充分也不必要条件解析 l 时l与m并不一定平行 而l m时 l与 也不一定平行 有可能l 条件甲是条件乙的既不充分也不必要条件 答案 d 3 平面 平面 的一个充分条件是 a 存在一条直线a a a b 存在一条直线a a a c 存在两条平行直线a b a b a b d 存在两条异面直线a b a b a b 解析 对于选项a 当 两平面相交 直线a平行于交线时 满足要求 故a不对 对于b 两平面 相交 当a在平面 内且a平行于交线时 满足要求 但 与 不平行 对于c 同样在 与 相交 且a b分别在 内且与交线都平行时满足要求 故只有d正确 因为a b异面 故在 内一定有一条直线a 与a平行且与b相交 a 又 b a 与b相交 答案 d 4 过三棱柱abc a1b1c1任意两条棱的中点作直线 其中与平面abb1a1平行的直线共有 条 解析 各中点连线如下图 只有面efgh与面abb1a1平行 在四边形efgh中有6条符合题意 答案 6 答案 平行 热点之一直线与平面平行的判定判定直线与平面平行 主要有三种方法 1 利用定义 常用反证法 2 利用判定定理 关键是找平面内与已知直线平行的直线 可先直观判断平面内是否已有 若没有 则需作出该直线 常考虑三角形的中位线 平行四边形的对边或过已知直线作一平面找其交线 3 利用面面平行的性质定理 当两平面平行时 其中一个平面内的任一直线平行于另一平面 特别警示 线面平行关系没有传递性 即平行线中的一条平行于一平面 另一条不一定平行于该平面 例1 如右图所示 已知p q是正方体abcd a1b1c1d1的面a1b1ba和面abcd的中心 证明 pq 平面bcc1b1 思路探究 可考虑用线面平行的判定定理 在平面bcc1b1内构造与pq平行的直线 也可利用面面平行的定义来证明 需构造过pq且与平面bcc1b1平行的平面 四边形pefq是平行四边形 pq ef 又pq 平面bcc1b1 ef 平面bcc1b1 pq 平面bcc1b1 证法二 如右图 取ab的中点e 连接pe qe p是a1b的中点 pe a1a 又a1a bb1 pe bb1 又pe 平面bcc1b1 bb1 平面bcc1b1 pe 平面bcc1b1 同理qe 平面bcc1b1 又pe qe 平面pqe pe qe e 平面pqe 平面bcc1b1 又pq 平面pqe pq 平面bcc1b1 即时训练如右图所示 在三棱锥p abc中 若d e f分别为pb pc ac的中点 问在pb上是否存在一点g 使得fg 平面ade 解 存在点g为bd的中点 取ec的中点h 连接fh hg 则fh ae hg ed 又ae ed e fh hg h 故平面fhg 平面ade 又fg 平面fhg 所以fg 平面ade 热点之二直线与平面平行的性质利用线面平行的性质 可以实现由线面平行到线线平行的转化 在平时的解题过程中 若遇到线面平行这一条件 就需在图中找 或作 过已知直线与已知平面相交的平面 这样就可以由性质定理实现平行转化 例2 如下图 在四面体abcd中 截面efgh平行于对棱ab和cd 试问截面在什么位置时其截面面积最大 思路探究 利用线面平行的性质 可以判定截面形状 再建立面积函数求最值 课堂记录 ab 平面efgh 平面efgh与平面abc和平面abd分别交于fg eh ab fg ab eh fg eh 同理可证ef gh 截面efgh是平行四边形 设ab a cd b fgh 即为异面直线ab和cd所成的角或其补角 又设fg x gh y 即时训练已知 直线a 平面 直线a 平面 b 求证 a b 证明 如下图所示 过直线a作平面 分别交平面 于直线m n m n不同于交线b 由直线与平面平行的性质定理得a m a n 由平行线的传递性得m n 由于n m 故n 平面 又n b 故n b 又a n 故a b 热点之三平面与平面平行的判定判定平面与平面平行的常用方法有 1 利用定义 常用反证法 2 利用判定定理 转化为判定一个平面内的两条相交直线分别平行于另一个平面 客观题中 也可直接利用一个平面内的两条相交线分别平行于另一个平面内的两条相交线来证明两平面平行 例3 如下图所示 正三棱柱abc a1b1c1各棱长为4 e f g h分别是ab ac a1c1 a1b1的中点 求证 平面a1ef 平面bcgh 思路探究 本题证面面平行 可证明平面a1ef内的两条相交直线分别与平面bcgh平行 然后根据面面平行的判定定理即可证明 课堂记录 abc中 e f分别为ab ac的中点 ef bc 又 ef 平面bcgh bc 平面bcgh ef 平面bcgh 又 g f分别为a1c1 ac的中点 a1g綊fc 四边形a1fcg为平行四边形 a1f gc 又 a1f 平面bcgh cg 平面bcgh a1f 平面bcgh 又 a1f ef f 平面a1ef 平面bcgh 即时训练正方体abcd a1b1c1d1中 e f分别为a1a和c1c的中点 求证 面eb1d1 面fdb 解 如右图 连接ed b1f 设正方体棱长为a 则eb1 df ed b1f 四边形edfb1为菱形 eb1 df 又 df 平面dbf eb1 平面dbf eb1 平面dbf 同理ed1 平面dbf 又eb1 ed1 e 平面eb1d1 平面dbf 热点之四平面与平面平行的性质平面与平面平行的判定与性质 同直线与平面平行的判定与性质一样 体现了转化与化归的思想 三种平行关系如下图 性质过程的转化实施 关键是作辅助平面 通过作辅助平面得到交线 就可把面面平行化为线面平行并进而化为线线平行 注意作平面时要有确定平面的依据 思路探究 本题是开放性题目 是近年来高考热点 利用面面平行的性质证明bg ch 从而可得 课堂记录 1 平面 平面 平面 与 没有公共点 但不一定总有ad be 同理不总有be cf 不一定有ad be cf 2 过a点作df的平行线 交 于g h两点 ah df 过两条平行线ah df的平面交平面 于ad ge hf 根据两平面平行的性质定理 有ad ge hf 即时训练 2010 广东佛山模拟 如下图 1 在正四棱柱abcd a b c d 中 ab 1 bb 1 e为bb 上使b e 1的点 平面aec 交dd 于f 交a d 的延长线于g 则异面直线ad与c g所成角的大小为 图 1 解析 如图 2 连结c f 由ad d g 知 c gd 为异面直线ad与c g所成的角 图 2 本节主要考查线线 线面 面面平行的判定与性质 题型多以选择题形式出现 属容易题 解答题中多以几何体为载体 试题中主要考查对定义 定理的深刻理解 对符号语言 图形语言 文字语言进行顺序的转换 既考查空间想象能力 又考查逻辑思维能力 例5 2010 湖南高考 如右图所示 在正方体abcd a1b1c1d1中 e是棱dd1的中点 1 求直线be和平面abb1a1所成的角的正弦值 2 在棱c1d1上是否存在一点f 使b1f 平面a1be 证明你的结论 解 1 如图 a 所示 取aa1的中点m 连结em bm 因为e是dd1的中点 四边形add1a1为正方形 所以em ad 又在正方体abcd a1b1c1d1中 ad 平面abb1a1 所以em 平面abb1a1 从而bm为直线be在平面abb1a1上的射影 ebm为be和平面abb1a1所成的角 2 在棱c1d1上存在点f 使b1f 平面a1be 事实上 如图 b 所示 分别取c1d1和cd的中点f g 连结eg bg cd1 fg 因a1d1 b1c1 bc 且a1d1 bc 所以四边形a1bcd1是平行四边形 因此d1c a1b 又e g分别d1d cd的中点 所以eg d1c 从而eg a1b 这说明a1 b g e共面 所以bg 平面a1be 因四边形c1cdd1与b1bcc1皆为正方形 f g分别为c1d1和cd的中点 所以fg c1c b1b 且fg c1c b1b 因此四边形b1bgf是平行四边形 所以b1f bg 而b1f 平面a1be bg 平面a1be 故b1f 平面a1be 3 在 2 的条件下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论