已阅读5页,还剩75页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1回归分析的基本思想及其初步应用 1 通过对典型案例的探究 了解回归分析的基本思想 方法及其初步应用 2 会求回归直线方程 并用回归直线方程进行预报 1 线性回归模型及随机误差e的来源 重点 2 残差及残差分析的方法 难点 2011年 日本发生了9级特大地震 是一个多世纪以来全世界特大的地震之一 而且余震不但级别高还很频繁 有大约63次不低于5级的余震 其中至少9次超过了6级 你知道地震的震级与地震次数之间有什么关系吗 2 基本概念 a和b为模型的未知参数 e是y与bx a之间的误差 通常e为随机变量 称为 x称为 y称为 随机误差 解释变量 预报变量 越小 2 残差图法残差点落在水平的带状区域内 说明选用的模型比较合适 其中这样的带状区域宽度 说明模型的精确度越高 比较均匀 越窄 r2越接近于1 3 建立回归模型的基本步骤 1 确定研究对象 明确哪个变量是 哪个变量是 2 画出确定好的和的 观察它们之间的关系 如是否存在线性关系 解释变量 预报变量 解释变量 预报变量 散点图 4 按一定规则 如最小二乘法 估计回归方程中的参数 5 得出结果后分析是否异常 如个别数据对应残差 残差呈现不等 若存在异常 则检查数据是否有误 或模型是否合适等 残差图 过大 随机的规律性 1 设两个变量x和y之间具有线性相关关系 它们的相关系数是r y关于x的回归直线的斜率是b 纵轴上的截距是a 那么必有 a b与r的符号相同b a与r的符号相同c b与r的符号相反d a与r的符号相反解析 因为b 0时 两变量正相关 此时r 0 b 0时 两变量负相关 此时r 0 所以选a 答案 a 解析 r2越大 说明模型的拟合效果越好 答案 c 3 若一组观测值 x1 y1 x2 y2 xn yn 之间满足yi bxi a ei i 1 2 n 且ei恒为0 则r2为 答案 1 4 为研究重量x 单位 克 对弹簧长度y 单位 厘米 的影响 对不同重量的6个物体进行测量 数据如下表所示 1 作出散点图并求线性回归方程 2 求出r2 3 进行残差分析 解析 1 散点图如图 2 列表如下 3 由残差表中的数值可以看出第3个样本点的残差比较大 需要确认在采集这个数据的时候是否有人为的错误 如果有的话 需要纠正数据 重新建立回归模型 由表中数据可以看出残差点比较均匀地落在不超过0 15的狭窄的水平带状区域中 说明选用的线性回归模型的精度较高 由以上分析可知 弹簧长度与拉力成线性关系 有一位同学家里开了一个小卖部 他为了研究气温对热茶销售杯数的影响 经过统计 得到一个卖出热茶杯数与当天气温的对比表 1 求热茶销售杯数与气温的线性回归方程 2 预测气温为 10 时热茶的销售杯数 根据样本点数据画出散点图 利用散点图直观分析热茶销售杯数y与气温x具有线性相关关系 利用线性回归方程中参数的计算公式可得线性回归方程并进行预测 解题过程 1 所给数据的散点图如图所示 题后感悟 1 在研究两个变量之间的关系时 首先可依据散点图初步判断它们是否线性相关 是否可以用线性回归模型来拟合数据 它们线性相关的强弱程度可通过线性相关系数值与1的接近程度来确定 如果本身两个变量不具备相关关系 或者说 它们之间相关关系不显著 即使求出回归方程也是毫无意义的 而且用其估计和预测的量也是不可信的 1 以下是收集到的房屋的销售价格y与房屋的大小x的有关数据 若y与x呈线性相关关系 求回归直线方程 解析 作出散点图 某城区为研究城镇居民月家庭人均生活费支出和月人均收入的相关关系 随机抽取10户进行调查 其结果如下 750 630 600 580 520 月人均生活费y 元 1080 850 800 760 700 月人均收入x 元 450 360 335 324 255 月人均生活费y 元 570 520 420 390 300 月人均收入x 元 1 作出散点图 2 求出回归方程 3 作出残差图 4 计算相关指数r2 5 试预测月人均收入为1100元和月人均收入为1200元的两个家庭的月人均生活费 规范解答 1 作出散点图如图所示 由图可知月人均生活费与月人均收入之间具有较强的线性相关关系 2分 3 残差分析 列表如下 作残差图如图所示 由图可知残差点比较均匀地分布在水平的带状区域中 说明选用的模型比较合适 8分 4 计算相关指数r2 0 9863 说明城镇居民的月人均生活费的差异约有98 63 是由月人均收入引起的 10分 5 由以上分析可知 我们可以利用回归方程 0 6599x 58 7239来计算月人均生活费的预报值 将x 1100代入 得y 784 61 将x 1200代入 得y 850 60 故预测月人均收入分别为1100元和1200元的两个家庭的月人均生活费分别为784 61元和850 60元 12分 题后感悟 该类题属于线性回归问题 解答本类题目应先通过散点图来分析两变量间的关系是否线性相关 然后再利用求回归方程的公式求解回归方程 并利用残差图或相关指数r2来分析函数模型的拟合效果 在此基础上 借助回归方程对实际问题进行分析 2 某运动员训练次数与运动成绩之间的数据关系如下 1 作出散点图 2 求出回归方程 3 作出残差图 4 计算相关指数r2 5 试预测该运动员训练47次及55次的成绩 解析 1 作出该运动员训练次数 x 与成绩 y 之间的散点图 如下图所示 由散点图可知 它们之间具有线性相关关系 2 列表计算 3 残差分析作残差图如下图所示 由图可知 残差点比较均匀地分布在水平带状区域中 说明选用的模型比较合适 4 计算相关指数r2计算相关指数r2 0 9855 说明了该运动员的成绩的差异有98 55 是由训练次数引起的 5 做出预报由上述分析可知 我们可用回归方程 1 0415x 0 00302作为该运动员成绩的预报值 将x 47和x 55分别代入该方程可得y 49和y 57 故预测该运动员训练47次和55次的成绩分别为49和57 在一化学反应过程中某化学物质的反应速度yg 分与一种催化剂的量xg有关 现收集了8组数据列于表中 试建立y与x之间的回归方程 解题过程 根据收集的数据作散点图 如图 根据样本点分布情况 可选用两种曲线模型来拟合 1 可认为样本点集中在某二次曲线y c1x2 c2的附近 令t x2 则变换后样本点应该分布在直线y bt a b c1 a c2 的周围 由题意得变换后t与y的样本数据表如下 作y与t的散点图 由y与t的散点图可观察到样本数据点并不分布在一条直线的周围 因此不宜用线性回归方程y bt a来拟合 即不宜用二次曲线y c1x2 c2来拟合y与x之间的关系 2 根据x与y的散点图也可以认为样本点集中在某一条指数型函数曲线y c1ec2x的周围 令z lny 则z c2x lnc1 即变换后样本点应该分布在直线z bx a a lnc1 b c2 的周围 由y与x的数据表可得z与x的数据表如下 作出z与x的散点图 如图 题后感悟 研究两个变量的关系时 根据样本数据作出散点图 观察散点图中样本点的分布 从整体看 如果样本点没有分布在某一条直线附近 我们就称这两个变量之间不具有线性相关关系 当回归方程不是形如y bx a a b r 时 称之为非线性回归方程 列举通过变量代换 把非线性回归方程转化为线性回归方程 1 y axm a m为常数 a x y取正值 令u lny v lnx b lna 则u mv b 3 下表为收集到的一组数据 1 作出x与y的散点图 并猜测x与y之间的关系 2 建立x与y的关系 预报回归模型并计算残差 3 利用所得模型 预报x 40时y的值 解析 1 作出散点图如图 从散点图可以看出x与y不具有线性相关关系 根据已有知识可以发现样本点分布在某一条指数函数曲线y c1ec2x的周围 其中c1 c2为待定的参数 2 对两边取对数把指数关系变为线性关系 令z lny 则有变换后的样本点应分布在直线z bx a a lnc1 b c2的周围 这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了 数据可以转化为 1 如何理解回归分析 1 从一组样本数据出发 确定变量之间的数学关系式 2 对这些关系式的可信程度进行各种统计检验 并从影响某一特定变量的诸多变量中找出哪些变量的影响显著 哪些不显著 3 利用所求的关系式 根据一个或几个变量的取值来预测或控制另一个特定变量的取值 并给出这种预测或控制的精确程度 3 如何理解随机误差e的主要来源 1 用线性回归模型近似真实模型 真实模型是客观存在的 但我们并不知道到底是什么 所引起的误差 可能存在非线性的函数能更好的描述y与x之间的关系 但我们现在却用线性函数来表述这种关系 结果就产生误差 这种由于模型近似所引起的误差包含在e中 2 忽略了某些因素的影响 影响变量y的因素不止变量x一个 可能还有其他因素 但通常它们每一个因素的影响可能都比较小 它们的影响都体现在e中 3 观测误差 由于测量工具等原因 得到的y的观测值一般是有误差的 这样的误差也包含在e中 以上三项误差越小 则回归模型的拟合效果越好 显然 r2的值越大 说明残差平方和越小 也就是说模型拟合效果越好 在线性回归模型中 r2表示解释变量对预报变量变化的贡献率 r2越接近1 表示解释变量和预报变量的线性相关性越
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店客房夜班管理规范与流程
- 工业设备安装工程安全管理工作流程
- 机械安全责任书范本与管理要点
- 企业节假日员工福利政策设计
- 2014年成人自考英语试题解析
- 子宫肌瘤病例讨论报告
- 2025中国安能集团第二工程局有限公司常州分公司招聘26人考试笔试备考题库及答案解析
- 2025年平湖市住房和城乡建设局所属事业单位建筑业管理服务中心选调工作人员笔试考试参考题库及答案解析
- 2025北京大学药学院天然药物及仿生药物全国重点实验室大型仪器技术平台专业技术人员招聘1人考试笔试模拟试题及答案解析
- 2025中国福特宝足球产业发展公司招聘3人笔试考试参考题库及答案解析
- 医院自助机讲解
- 基于膜生物反应器的2025年城市污水处理深度处理工艺研究报告
- 精神科探视管理课件
- 传染病诊断标准
- 胆总管结石伴急性化脓性梗阻性胆管炎的护理课件
- 云南罚没财物管理办法
- 郡县制教学课件
- 颈动脉狭窄个案护理
- 2025年新疆中考数学试题(含答案)
- 2024年广东省清远市事业单位招聘考试《公共基础知识》真题库及答案
- D级压力容器质量管理体系内审资料符合TSG07-2019附录M
评论
0/150
提交评论