1.7平方差公式.doc_第1页
1.7平方差公式.doc_第2页
1.7平方差公式.doc_第3页
1.7平方差公式.doc_第4页
1.7平方差公式.doc_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7课时;平方差公式王捷同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,王捷就说出应付99.6元,结果与售货员计算出的结果相吻合。售货员很惊讶地说:“你好象是个神童,怎么算得这么快?”王捷同学说:“过奖了,我利用了在数学上刚学过的一个公式。”你知道王捷同学用的是一个什么样的公式吗?计算:(1)(x+1)(x-1)= 。(2) (m+2)(m-2)= 。 (3)(2x+1)(2x-1)= 。它们的结果有什么共同特点?你知道为什么吗? 猜一猜 (a+b)(a-b)=_归 纳 平方差公式:(a+b)(a-b)= a2b2 用文字语言怎么表述?即:两个数的和与这两个数的差的积,等于这两个数的平方差。(强调:1、公式中a,b可以表示数,单项式,多项式甚至更复杂的代数式。2、平方差公式的特点是:一项相同,另一项互为相反数)想一想 下列两个多项式相乘,哪些可以用平方差公式?哪些不能用?(1)(2x-3y)(3y-2x) (2)(-2x+3y)(2x+3y)(3)(2x-3y)(2x-3y) (4)(2x+3y)(2x-3y)(5)(-2x-3y)(2x-3y) (6)(2x+3y)(-2x-3y)1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式再次强调:平方差公式的特点是:一项相同,另一项互为相反数;探 究 1、边长为a的正方形板缺了一个边长为b的正方形角,经裁剪后拼成了一个长方形。(1)你能分别表示出裁剪前后的的纸板的面积吗?(2)你能得到怎样的一个结论?ba30aaa-bb 解:(1)裁剪前的纸板的面积为 ,裁剪后拼成的长方形纸板的面积为 ;(2)我能得到的一个结论 2、开头的情景问题,你能解释吗?你还有其它的方法吗?3、计算: 10397能力提高一、选择题1平方差公式(a+b)(ab)=a2b2中字母a,b表示( )A只能是数 B只能是单项式 C只能是多项式 D以上都可以2下列多项式的乘法中,可以用平方差公式计算的是( ) A(a+b)(b+a) B(a+b)(ab) C(a+b)(ba) D(a2b)(b2+a)3下列计算中,错误的有( )(3a+4)(3a4)=9a24;(2a2b)(2a2+b)=4a2b2;(3x)(x+3)=x29;(x+y)(x+y)=(xy)(x+y)=x2y2 A1个 B2个 C3个 D4个4若x2y2=30,且xy=5,则x+y的值是( ) A5 B6 C6 D5二、填空题5(2x+y)(2xy)=_6(3x2+2y2)(_)=9x44y47(a+b1)(ab+1)=(_)2(_)28两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_三、计算题9利用平方差公式计算:201910计算:(a+2)(a2+4)(a4+16)(a2)四、选做题:45301545454515A=(2+1)(22+1)(24+1)(28+1),则A的末位数是_.吴心梦一、七彩题1(多题思路题)计算: (1)(2+1)(22+1)(24+1)(22n+1)+1(n是正整数); (2)(3+1)(32+1)(34+1)(32008+1)2(一题多变题)利用平方差公式计算:2009200720082 (1)一变:利用平方差公式计算: (2)二变:利用平方差公式计算:二、知识交叉题3(科内交叉题)解方程:x(x+2)+(2x+1)(2x1)=5(x2+3)三、实际应用题4广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5(2007,泰安,3分)下列运算正确的是( ) Aa3+a3=3a6 B(a)3(a)5=a8 C(2a2b)4a=24a6b3 D(a4b)(a4b)=16b2a26(2008,海南,3分)计算:(a+1)(a1)=_C卷:课标新型题1(规律探究题)已知x1,计算(1+x)(1x)=1x2,(1x)(1+x+x2)=1x3,(1x)(1+x+x2+x3)=1x4 (1)观察以上各式并猜想:(1x)(1+x+x2+xn)=_(n为正整数) (2)根据你的猜想计算: (12)(1+2+22+23+24+25)=_ 2+22+23+2n=_(n为正整数) (x1)(x99+x98+x97+x2+x+1)=_ (3)通过以上规律请你进行下面的探索: (ab)(a+b)=_ (ab)(a2+ab+b2)=_ (ab)(a3+a2b+ab2+b3)=_2(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字43.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图171所示,然后拼成一个平行四边形,如图172所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下参考答案A卷一、1D 2C 点拨:一个算式能否用平方差公式计算,关键要看这个算式是不是两个数的和与这两个数的差相乘的形式,选项A,B,D都不符合平方差公式的结构特征,只有选项C可以用平方差公式计算,故选C3D 点拨:(3a+4)(3a4)=(3a)242=9a216,(2a2b)(2a2+b)=(2a2)2b2=4a4b2,(3x)(x+3)=32x2=9x2,(x+y)(x+y)=(xy)(x+y)=(x2y2)=x2+y2,故选D4C 点拨:因为(x+y)(xy)=x2y2,又x2y2=30,xy=5,所以5(x+y)=30,x+y=6,故选C二、54x2y2 点拨:(2x+y)(2xy)=(2x)2y2=4x2y263x22y2 点拨:因为(3x2+2y2)(3x22y2)=(3x2)2(2y2)2=9x44y4,所以本题应填写3x22y27a;b1 点拨:把a+b1转化为a+(b1),把ab+1转化为a(b1),可得(a+b1)(ab+1)=a+(b1)a(b1)=a2(b1)2810 点拨:设较大的正方形的边长为a,较小的正方形的边长为b,则a+b=5,ab=2,所求的面积差为a2b2,而(a+b)(ab)=a2b2,故a2b2=10三、9解:2019=(20+)(20)=202()2=400=399 点拨:先把两个因数分别转化成两数的和与这两个数的差,再利用平方差公式计算10解:(a+2)(a2+4)(a4+16)(a2)=(a2)(a+2)(a2+4)(a4+16)=(a24)(a2+4)(a4+16)=(a416)(a4+16)=a8162=a8256 点拨:根据题中因式的结构特征,依次运用平方差公式进行计算B卷一、1解:(1)(2+1)(22+1)(24+1)(22n+1)+1=(21)(2+1)(22+1)(24+1)(22n+1)+1=(221)(22+1)(24+1)(22n+1)+1=(241)(24+1)(22n+1)+1=(22n)21+1=24n1+1=24n; (2)(3+1)(32+1)(34+1)(32008+1)=(31)(3+1)(32+1)(34+1)(32008+1)=(321)(32+1)(34+1)(32008+1)=(341)(34+1)(32008+1)=(340161)=2解:2009200720082=(2008+1)(20081)20082=20082120082=1(1)=2007 (2)=1 点拨:把式子中乘积部分的运算通过变形转化为平方差公式的结构形式,然后运用平方差公式化繁为简二、3解:x(x+2)+(2x+1)(2x1)=5(x2+3),x2+2x+4x21=5x2+15,x2+4x25x2+2x=15+1,2x=16,x=8三、4解:(2a+3)(2a3)=(2a)232=4a29(平方米) 答:改造后的长方形草坪的面积是(4a29)平方米四、5D 点拨:A选项a3+a3=2a3;B选项(a)3(a)5=a8;C选项(2a2b)4a=8a3b;D选项正确,故选D6a21C卷1(1)1xn+1 (2)63;2n+12;x1001 (3)a2b2 a3b3 a4b4 点拨:(1),(3)题根据观察到的规律正确填写即可;(2)题中利用观察到的规律可知,原式=126=164=63;中原式=2(1+2+22+2n1)=2(12)(1+2+22+2n1)=2(12n)=2+22n=2n+12;中原式=(1x)(1+x+x2+x97+x98+x99)=(1x100)=x10012解:(m+2n)(m2n)=m24n2 点拨:本题答案不唯一,只要符合要求即可3.解:题图1中的阴影部分(四个等腰梯形)的面积为a2b2,题图2中的阴影部分(平行四边形)的底为(a+b),这个底上的高为(ab),故它的面积为(a+b)(ab),由此可验证:(a+b)(ab)=a2b2 图1 图2吴心梦2平方差公式 完全平方公式 立方和与立方差公式例1我们来计算(a+b)(a-b)=a2-ab+ab-b2=a2-b2,这就是说,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式利用这个公式计算: (1)(2x+3y)(2x-3y) (2)(1+2a)(1-2a) (3)(2x3+5y2)(2x3-5y2) (4)(-a2-b2)(b2-a2) 提示: 刚开始使用公式,运算格式可分两步走,第一步先按公式特征写出一个框架,如(1)(2x+3y)(2x-3y) =( )2-( )2,第二步分析哪项相当于公式中的a,哪项相当于公式中的b,并在框架中填数计算。 参考答案: (1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2)(1+2a)(1-2a) =12-(2a)2=1-4a2 (3)(2x3+5y2)(2x3-5y2)=(2x3)2-(5y2)2=4x6-25y4 (4)(-a2-b2)(b2-a2)=(-a2-b2)(-a2+b2)=(-a2)2-(b2)2=a4-b4 说明: 平方差公式(a+b)(a-b)=a2-b2的特征是: (1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。 (2)右边是乘式中两项的平方差:即用相同项的平方减去相反项的平方,在学习平方差公式时还应注意: 公式中的a和b可以是具体数,也可以是单项式或多项式 一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目加以调整,使它变化为符合公式标准的形式,如第(4)小题。例2计算(a+b)2和(a-b)2,(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2即(ab)2=a22ab+b2,这就是说,两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们积的2倍,这两个公式叫做乘法的完全平方公式。利用这两个公式计算(1)(x+5)2 (2)(2-y)2 (3)(3a+2b)2 (5) (-a+2b)2 提示: 在套用完全平方公式进行计算时,一定要先弄清题目中的哪个数或式是a,哪个数或式是b。 参考答案: (1)(x+5)2=x2+2x5+52=x2+10x+25 (2)(2-y)2=22-22y+y2=4-4y+y2 (3)(3a+2b)2=(3a)2+23a2b+(2b)2=9a2+12ab+4b2 (5)(-a+2b)2=(-a)2+2(-a)2b+(2b)2=a2-4ab+4b2 说明: 1、(a+b)2=a2+2ab+b2与(a-b)2=a2-2ab+b2都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。 2、这两个公式的结构特征是:左边是两个相同的二项式相乘,(即二项式的平方形式),右边是三项式,是左边二项式中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍。 3、公式中的字母a、b既可以表示具体的数,也可以表示单项式或多项式等代数式。 4、只要符合这一公式的结构特征,就可以运用这一公式,在运用公式时,注意防止发生(ab)2=a2b2这样的错误。 例3计算(a+b)(a2-ab+b2)和(a-b)(a2+ab+b2),(1)(a+b)(a2-ab+b2)=a2-a2b+ab2+a2b-ab2+b3=a3+b3,(2)(a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3=a3-b3,即(ab)(a2ab+b2)=a3b3,这就是说,两数和(或差)乘以它们的平方和与它们的积的差(或和),等于这两个数的立方和(或差),这两个公式叫做乘法的立方和公式与立方差公式利用这两个公式计算: (1)(x+2)(x2-2x+4); (2)(3-y)(9+3y+y2) ;(3)(3x-4y)(9x2+12xy+16y2) (5)(3x2-2y2)(9x4+6x2y2+4y4) 提示: 先弄清题目是用立方和公式还是用立方差公式计算,再弄清题目中哪个数或式是a,哪个数或式是b,最后再代入公式计算。 参考答案: (1)(x+2)(x2-2x+4)=(x+2)(x2-x2+22)=x3+23=x3+8 (2)(3-y)(9+3y+y2)=(3-y)(32+3y+y2)=33-y3=27-y3 (3)(3x-4y)(9x2+12xy+16y2)=(3x-4y)(3x)2+3x4y+(4y2)=(3x)3-(4y)3=27x3-64y3 (5)(3x2-2y2)(9x4+6x2y2+4y4)=(3x2-2y2)(3x2)2+3x22y2+(2y2)2=(3x2)3-(2y2)3=27x6-8y6 说明: 1、注意对公式的理解和记忆(1)项数特征:两项乘三项积为二项,(2)符号特征:二项的因式若两项都为+,则三项的因式符号为+,-,+,积的符号与二项因式的符号相同,二项的因式符号若为+,-,则三项的因式符号为+,+,+,积的符号与二项因式的符号相同,即是说公式在各种条件都相符的情况下,所得的积是两数的立方和还是两数的立方差,主要看乘积中第一个乘式是两数和,还是两数差。 2、公式中的字母a、b仍代表任意数或代数式。 综合运用例1利用乘法公式计算: (1)(x+3)(x-3)(x2+9) (2) (a+b)(a-b)(a2-b2) (3) (x-2)(x+2)(x4+4x2+16) (4) (a-b)(a2+ab+b2)(a6+a3b3+b6) 提示: (1)小题可两次使用平方差公式; (2)小题先使用平方差公式,再使用完全平方公式; (3)小题先使用平方差公式,再使用立方差公式 (4)小题两次使用立方差公式。 参考答案: (1)(x+3)(x-3)(x2+9)=(x2-9)(x2+9)=(x2)2-92=x4-81 (2)(a+b)(a-b)(a2-b2)=(a2-b2)(a2-b2)=(a2-b2)2=(a2)2-2a2b2+(b2)2=a4-2a2b2+b4 (3)(x-2)(x+2)(x4+4x2+16)=(x2-4)(x4+4x2+16)=(x2)3-43=x6-64 (4)(a-b)(a2+ab+b2)(a6+a3b3+b6)=(a3-b3)(a6+a3b3+b6)=(a3)3-(b3)3=a9-b9 说明: 遇到多项式的乘法问题,首先应看看是否符合某个乘法公式,若有恰当的公式使用可大大简化运算过程。 例2运用乘法公式计算: (1) (a+b+c)(a-b-c) (2) (a-2b+3c)(a+2b-3c) (3) (x+2y+z)2 (4) (2x-3y-4z)2 提示: (1)(2)小题可利用平方差公式进行计算;(3)(4)小题可利用完全平方公式进行计算。 参考答案: (1)(a+b+c)(a-b-c)=a+(b+c)a-(b+c)=a2-(b+c)2=a2-(b2+2bc+c2)=a2-b2-2bc-c2 (2) (a-2b+3c)(a+2b-3c)=a-(2b-3c)a+(2b-3c)=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2-12bc-9c2 (3)(x+2y+z)2=x+(2y+z)2=x2+2x(2y+z)+(2y+z)2=x2+4xy+2xz+4y2+4yz+z2 (4) (2x-3y-4z)2=2x-(3y+4z)2=(2x)2-22x(3y+4z)+(13y+4z)2=4x2-4x(3y+4z)+(19y2+24yz+16z2)=4x2-12xy-16xz+9y2+24yz+16z2 说明: 进行多项式乘法运算时,一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目加以调整。适当地添加括号,将有利于应用乘法公式,添加括号方式的不同,可一题多解,如(4)小题还可添加括号为(2x-3y)-4z2,但得出的结果均相同。 例3利用乘法公式计算: (1)(x+1)(x-1)(x2+x+1)(x2-x+1) (2)(a+b)(a-b)(a2+ab+b2)(a2-ab+b2) 提示: (1)小题前两个因式可利用平方差公式计算,后两个因式也可利用平方差公式计算,也可以将第一个因式与第四个因式结合利用立方和公式,第二个因式与第三个因式结合利用立方差公式(2)小题类似。 参考答案: (1) 解法一: (x+1)(x-1)(x2+x+1)(x2-x+1) = (x2-1)(x2+1)2-x2 = (x2-1)(x4+2x2+1-x2) = (x2-1)(x4+x2+1) = (x2-1)(x2)2+x2-1+12 = (x2)3-13= x6-1 解法二: (x+1)(x-1)(x2+x+1)(x2-x+1) = (x+1)(x2-x+1)(x-1)(x2+x+1) =(x3+1)(x3-1) = (x3)2-12 = x6-1 (2) 解法一: (a+b)(a-b)(a2+ab+b2)(a2-ab+b2) = (a2-b2)(a2+b2)2-(ab)2 = (a2-b2)(a4+2a2b2+b4-a2b2) = (a2-b2)(a4+a2b2+b4) = (a2)3-(b2)3 = a6-b6 解法二: (a+b)(a-b)(a2+ab+b2)(a2-ab+b2) = (a+b)(a2-ab+b2)(a-b)(a2+ab+b2) = (a3+b3)(a3-b3) = (a3)2-(b3)2 =a6-b6 说明: 进行整式乘法运算时,要注意观察题目的特点,统观全局,恰当地选用所学的乘法公式或用乘法法则进行计算,以上两道小题的解法中,显然解法二先运用立方和,立方差公式,再运用平方差公式,这样做既简便又不易出错。第三阶梯例1(1)化简化求值:(x+2)(x2-2x+4)+(x-1)(x2+x+1),其中 (2)解方程:(2x+1)2-(x+1)(x-1)-3x(x-1)=0 提示: 用乘法公式进行化简 参考答案: (1) (x+2)(x2-2x+4)+(x-1)(x2+x+1) = x3+8+x3-1 = 2x3+7 当时, (2)(2x+1)2-(x+1)(x-1)-3x(x-1)=0 解: (4x2+4x+1)-(x2-1)-3x2+3x=0 4x2+4+1-x2+1-3x2+3x=0 7x=-2 说明: 在化简求值和解方程的过程中,如果遇到多项式的乘法,应先观察能否运用乘法公式,如果能运用,很多乘法就可直接应用公式写出结果,这充分简化了计算过程。例2已知a+b=3,ab=-8,求下列各式的值。 (1)a2+b2 (2) a2-ab+b2 (3) (a-b)2 (4) a3+b3 提示: 由完全平方公式(a+b)2=a2+2ab+b2,可知a2+b2=(a+b)2-2ab,利用已知条件可求出a2+b2的值,再分别代入(2),(3),(4),可求出(2),(3),(4)式的值。注意,第(4)小题应逆用立方和公式。 参考答案: (1) a2+b2=(a+b2)-2ab=32-2(-8)=9+16=25 (2) a2-ab+b2=a2+b2-ab=25-(-8)=25+8=33 (3) (a-b)2=a2-2ab+b2=a2+b2-2ab=25-2(-8)=25+16=41 (4) a3+b3=(a+b)(a2-ab+b2)=(a+b)(a2+b2-ab)=325-(-8)=333=99 说明:灵活运用公式变形和逆用公式,这些都是常用的解题技巧。 例3若两个连续自然数的平方差是17,求这两个自然数的和? 提示: 设一个自然数为x,另一个自然数为x+1,根据题意,列出方程,求出这两个自然数,进而求出它们的和参考答案: 解:设这两个连续自然数是x,x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论