




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案73坐标系与参数方程导学目标: 1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用自主梳理1极坐标系的概念在平面上取一个定点o,叫做极点;自极点o引一条射线ox,叫做_;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个_设m是平面上任一点,极点o与点m的距离om叫做点m的_,记为;以极轴ox为始边,射线om为终边的角xom叫做点m的_,记为.有序数对(,)叫做点m的_,记作(,)2极坐标和直角坐标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设m是平面内任意一点,它的直角坐标是(x,y),极坐标为(,),则它们之间的关系为x_,y_.另一种关系为:2_,tan _.3简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程(,)0,并且坐标适合方程(,)0的点都在曲线上,那么方程(,)0叫做曲线的_(2)常见曲线的极坐标方程圆的极坐标方程_表示圆心在(r,0)半径为|r|的圆;_表示圆心在(r,)半径为|r|的圆;_表示圆心在极点,半径为|r|的圆直线的极坐标方程_表示过极点且与极轴成角的直线;_表示过(a,0)且垂直于极轴的直线;_表示过(b,)且平行于极轴的直线;sin()0sin(0)表示过(0,0)且与极轴成角的直线方程4常见曲线的参数方程(1)直线的参数方程若直线过(x0,y0),为直线的倾斜角,则直线的参数方程为这是直线的参数方程,其中参数l有明显的几何意义(2)圆的参数方程若圆心在点m(a,b),半径为r,则圆的参数方程为00)的参数方程为自我检测1点m的直角坐标为(,1),则它的极坐标为_2在极坐标系中,点(,)与(,)的位置关系为_3在直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,设点a,b分别在曲线c1:(为参数)和曲线c2:1上,则|ab|的最小值为_4在极坐标中,直线sin()2被圆4截得的弦长为_5已知圆c的参数方程为(为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 1,则直线l与圆c的交点的直角坐标为_.探究点一求曲线的极坐标方程例1 在极坐标系中,以(,)为圆心,为半径的圆的方程为_变式迁移1 如图,求经过点a(a,0)(a0),且与极轴垂直的直线l的极坐标方程探究点二极坐标方程与直角坐标方程的互化例2在直角坐标系xoy中,以o为极点,x轴正半轴为极轴建立坐标系曲线c的极坐标方程为cos1,m、n分别为c与x轴,y轴的交点(1)写出c的直角坐标方程,并求m、n的极坐标;(2)设mn的中点为p,求直线op的极坐标方程变式迁移2在极坐标系下,已知圆o:cos sin 和直线l:sin(),(1)求圆o和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆o公共点的一个极坐标探究点三参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1);(2);(3).变式迁移3 化下列参数方程为普通方程,并作出曲线的草图(1)(为参数);(2) (t为参数)探究点四参数方程与极坐标的综合应用例4 求圆3cos 被直线(t是参数)截得的弦长变式迁移4 在直角坐标系xoy中,曲线c1的参数方程为(为参数)m是c1上的动点,p点满足2,p点的轨迹为曲线c2.(1)求c2的方程;(2)在以o为极点,x轴的正半轴为极轴的极坐标系中,射线与c1的异于极点的交点为a,与c2的异于极点的交点为b,求|ab|.本节内容要注意以下两点:一、简单曲线的极坐标方程可结合极坐标系中和的具体含义求出,也可利用极坐标方程与直角坐标方程的互化得出同直角坐标方程一样,由于建系的不同,曲线的极坐标方程也会不同在没有充分理解极坐标的前提下,可先化成直角坐标解决问题二、在普通方程中,有些f(x,y)0不易得到,这时可借助于一个中间变量(即参数)来找到变量x,y之间的关系同时,在直角坐标系中,很多比较复杂的计算(如圆锥曲线),若借助于参数方程来解决,将会大大简化计算量将曲线的参数方程化为普通方程的关键是消去其中的参数,此时要注意其中的x,y(它们都是参数的函数)的取值范围,也即在消去参数的过程中一定要注意普通方程与参数方程的等价性参数方程化普通方程常用的消参技巧有:代入消元、加减消元、平方后相加减消元等同极坐标方程一样,在没有充分理解参数方程的前提下,可先化成直角坐标方程再去解决相关问题课后练习(满分:90分)一、填空题(每小题6分,共48分)1直角(t为参数)恒过定点_2点m(5,)为极坐标系中的一点,给出如下各点的坐标:(5,);(5,);(5,);(5,)其中可以作为点m关于极点的对称点的坐标的是_(填序号)3在极坐标系中,若点a,b的坐标分别为(3,),(4,),则ab_,saob_.(其中o是极点)4已知两曲线参数方程分别为(00)相切,则r_.6在极坐标系中,圆心在(,)且过极点的圆的方程为_7以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为(r),它与曲线(为参数)相交于两点a和b,则ab_.8在直角坐标系中圆c的参数方程为(为参数),若以原点o为极点,以x轴正半轴为极轴建立极坐标系,则圆c的极坐标方程为_二、解答题(共42分)9(14分)o1和o2的极坐标方程分别为4cos,4sin.(1)把o1和o2的极坐标方程化为直角坐标方程;(2)求经过o1,o2交点的直线的直角坐标方程10(14分)在平面直角坐标系xoy中,求过椭圆(为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程11(14分)在直角坐标系xoy中,直线l的参数方程为(t为参数)在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点o为极点,以x轴正半轴为极轴)中,圆c的方程为2sin .(1)求圆c的直角坐标方程;(2)设圆c与直线l交于点a,b.若点p的坐标为(3,),求papb.学案73坐标系与参数方程答案自主梳理1极轴极坐标系极径极角极坐标2.cos sin x2y2(x0)3.(1)极坐标方程(2)2rcos 2rsin r(r)cos asin b自我检测1(2,)(答案不唯一)2重合33解析c1:(x3)2(y4)21,c2:x2y21,两圆心之间的距离为d5.a曲线c1,b曲线c2,|ab|min523.44解析直线sin()2可化为xy20,圆4可化为x2y216,由圆中的弦长公式得224.5(1,1),(1,1)解析ysin ,直线l的直角坐标方程为y1.由得x2(y1)21.由得或直线l与圆c的交点的直角坐标为(1,1)和(1,1)课堂活动区例1 解题导引求曲线的极坐标方程的步骤:建立适当的极坐标系,设p(,)是曲线上任意一点;由曲线上的点所适合的条件,列出曲线上任意一点的极径和极角之间的关系式;将列出的关系式进行整理、化简,得出曲线上的极坐标方程;证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,这一证明可以省略答案asin ,0解析圆的直径为a,设圆心为c,在圆上任取一点a(,),则aoc或,即aoc|.又acosaocacos|asin .圆的方程是asin ,0.变式迁移1 解设p(,)是直线l上任意一点,opcos oa,即cos a,故所求直线的极坐标方程为cos a.例2 解题导引直角坐标方程化为极坐标方程比较容易,只要运用公式xcos 及ysin 直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如cos ,sin ,2的形式,进行整体代换其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验解(1)由cos1得1.从而c的直角坐标方程为xy1,即xy2,当0时,2,所以m(2,0)当时,所以n.(2)m点的直角坐标为(2,0)n点的直角坐标为(0,)所以p点的直角坐标为,则p点的极坐标为,所以直线op的极坐标方程为,(,)变式迁移2 解(1)圆o:cos sin ,即2cos sin ,圆o的直角坐标方程为x2y2xy,即x2y2xy0.直线l:sin(),即sin cos 1,则直线l的直角坐标方程为yx1,即xy10.(2)由得故直线l与圆o公共点的一个极坐标为(1,)例3 解题导引参数方程通过消去参数化为普通方程对于(1)直接消去参数k有困难,可通过两式相除,先降低k的次数,再运用代入法消去k;对于(2)可运用恒等式(sin cos )21sin 2消去;对于(3)可运用恒等式()2()21消去t.另外,参数方程化为普通方程时,不仅要消去参数,还应注意普通方程与原参数方程的取值范围保持一致解(1)两式相除,得k.将k代入,得x.化简,得所求的普通方程是4x2y26y0(y6)(2)由(sin cos )21sin 22(1sin 2),得y22x.又x1sin 20,2,得所求的普通方程是y22x,x0,2(3)由()2()21,得x24y21.又x1,得所求的普通方程是x24y21(x1)变式迁移3 解(1)由y2(sin cos )21sin 212x,得y22x1.sin 2,x.sin cos ,y.故所求普通方程为y22 (x,y),图形为抛物线的一部分图形如图甲所示(2)由x2y2221及x0,xy0知,所求轨迹为两段圆弧x2y21 (0x1,0y1或1x0,1y0)图形如图乙所示例4 解题导引一般将参数方程化为普通方程,极坐标方程化成直角坐标方程解决解将极坐标方程转化成直角坐标方程:3cos 即:x2y23x,即(x)2y2.即:2xy30.所以圆心到直线的距离d0,即直线经过圆心,所以圆被直线截得的弦长为3.变式迁移4 解(1)设p(x,y),则由条件知m(,)由于m点在c1上,所以即从而c2的参数方程为(为参数)(2)曲线c1的极坐标方程为4sin ,曲线c2的极坐标方程为8sin .射线与c1的交点a的极径为14sin,射线与c2的交点b的极径为28sin.所以|ab|21|2.课后练习区1(3,1)解析由题知,x3(y1),恒过定点(3,1)2356解析aob,aob为直角三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公交营运工作管理制度
- 巾帼建功学校管理制度
- 全面成本要素管理制度
- 公司在岸人员管理制度
- 商业公司售后管理制度
- 桥梁桥墩装修方案(3篇)
- 车位整体划转方案(3篇)
- 碳钢储罐维修方案(3篇)
- 土方工程资料管理制度
- 购置厂房付款方案(3篇)
- 宁夏回族自治区中卫市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- rg-wall1600系列下一代防火墙命令手册
- (人教版教材)初中地理《巴西》完整版
- 喷淋系统调试报告doc
- 科研经费审计报告模板
- DB4416∕T 5-2021 地理标志产品 河源米粉
- 雨季监理实施细则
- 课件:基础生命支持
- 分层审核检查表LPA全套案例
- 柔版印刷常见故障及解决办法
- 三标一体文件编写指南
评论
0/150
提交评论