原子结构和元素周期律.ppt_第1页
原子结构和元素周期律.ppt_第2页
原子结构和元素周期律.ppt_第3页
原子结构和元素周期律.ppt_第4页
原子结构和元素周期律.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1原子结构的认识史 2原子结构理论 3多电子原子的核外电子排布 4原子结构和元素周期律 原子结构和元素周期律 1原子结构认识史 公元前五世纪 希腊唯物主义哲学家得莫克利特提出 古原子说 十九世纪初 英国化学家道尔顿创立了 原子论 简明而深刻地说明了质量守恒定律 定组成定律和倍比定律 化学的新时代随着原子论而开始 道尔顿成为近代化学之父 1897年英国科学家汤姆逊证明阴极射线是带负电的微粒 电子 并证明电子是物质普遍的组成要素 1904年他提出了原子的 枣糕模型 并于1906年获得诺贝尔物理学奖 但枣糕模型无法说明元素化学反应本质1911年卢瑟福通过 粒子流穿过金箔时 部分 粒子被散射的实验发现了原子核 提出 太阳系 原子模型 使人们对原子结构认识前进一大步 但它无法对元素发射光谱现象加以解释 Next 阴极射线的性质与组成阴极管的材料无关 返回 返回 氢原子光谱 410 2nm434 1nm486 1nm656 3nm 1900年德国物理学家普朗克提出量子理论 一个原子不能连续地吸收或发射能量 只能按某一最小能量一份一份地或按此最小能量的倍数吸收或发射能量 这种情况被称为能量的量子化 quantization 这个能量最小单位被称为能量子 普朗克假说成为20世纪物理学研究的基础 他获得1918年诺贝尔物理学奖 爱因斯坦的光量子学说 2原子结构理论 2 1经典原子结构理论 玻尔 Bohr 理论 氢原子中的电子只能在原子核周围确定半径圆形轨道中运动 电子在这些轨道上运动不吸收能量也不放出能量 即电子处于某种定态 在一定轨道上运动的电子有一定的能量 而能量只能取某些由量子化条件决定的数值 不能取处于两相临轨道之间的数值 能量最低的定态称基态 其余称激发态 E为能量 Z为核电荷数 n为量子数 n越小 离核越近 轨道能量越低 势能值越负 一般情况下 电子尽可能处于能量最低轨道上 获得能量后可跃迁到激发态 激发态不稳定 电子会释放能量回到基态 原因 未完全摆脱经典力学的束缚 仍然用宏观物体的固定轨道来描述高速电子的运动状态 成功地解释了氢原子和类氢原子 如He Li2 的光谱现象 指出了核外电子运动的一个重要特性 能量的量子化 对近代原子结构理论的发展做出了重大贡献 获得1922年诺贝尔物理学奖严重的局限性 只能解释单电子原子 或离子 光谱的一般现象 不能解释多电子原子光谱 更不能解释原子如何结合成分子的化学键的本质 波尔理论的优点和不足 2 2近代原子结构理论 1 电子的波粒二象性 wave particlequality 1924年法国物理学家德布罗依在光的波粒二象性启发下提出所有微观粒子都具有波粒二象性 电子束通过镍箔所得衍射图 2 测不准原理 uncertaintyprinciple 1927年海森堡提出测不准原理 不可能同时准确测定微观粒子运动的位置和动量 位置测得越准 动量就测得越不准 反之亦然 电子质量 电子在原子中运动速度约为 原子半径约 故电子坐标测定误差至少要小于才有意义 计算是多大 微观粒子运动不符合经典力学规律 电子运动有规律但无法确定其运动轨迹 概率 出现机会多少核外空间某些区域电子出现的机会多 概率大 核外空间某些区域电子出现的机会少 概率小 概率密度 电子在原子核外某处单位体积内出现的概率 3 微观粒子运动的统计性 如1s的电子云 小黑点较密的地方 概率密度较大 单位体积内电子出现的机会多 电子云 用小黑点的疏密表示电子出现概率密度的相对大小 4 薛定谔方程 微粒的波动方程 薛定谔方程的解 波函数 x y z 及对应的能量E p137 对薛定谔方程求解 可以得到一系列波函数 s s p i 相应的能量值E s E s E p Ei 方程的每一个解代表电子的一种可能运动状态 的空间图象叫原子轨道 为得到有意义的合理解 必须使波函数中某些常数的取值受特定的限制 这些受特定限制的常数称为量子数 它们是主量子数n 较量字数l 和磁量子数m 是描述核外电子在三维空间中运动状态的一个数学函数式 量子数 主量子数 n 表示电子在核外空间出现概率最大区域离核的远近 是决定电子能力高低的主要因素n 1 2 3 4 5 正整数 n值越小 该电子层离核越近 能级越低 角量子数 表示原子轨道或电子云的形状 多电子原子中 它和主量子数共同决定电子的能量 0 1 2 3 n 1 的正整数 同一电子层 值越小 该电子亚层能级越低 磁量子数 m 表示原子轨迹或电子云在空间的伸展方向m值 0 的正整数 共 2l 1 个每一个m值代表一个取向 即一个原子轨道 同一亚层内的各原子轨道 在没有外加磁场下 能量是相等的 称等价轨道 简并轨道 z z z z z z x x x x x x x x y y y y y s pxpypz dxydyzdxz dx2dx2 y2 自旋量子数 ms 描述原子中每个电子的运动状态必须用四个量子数 即主量子数 n 电子所处的电子层副量子数 l 电子所处的电子亚层及原子轨道 电子云的形状磁量子数 m 轨道在空间的伸展方向自旋量子数 ms 电子自旋方向 描述电子的自旋状态ms值 顺时针方向或逆时针方向 如n 2 1 m 1 ms 则可知是第二电子层 p亚层 px轨道 自旋方向为 的电子 1 多电子原子轨道的能级 6s5s4s3s2s1s 6p5p4p3p2p 5d4d3d 4f PONMLK 1s 2p2s 3p3s 4p3d4s 5p4d5s 6p5d4f6s 1 能级K L M N O P 3 同一原子 不同电子亚层有能级交错现象 如E5s E4d E5p 2 同一电子层 Ens Enp End Enf 近似能级图 3多电子原子的核外电子排布 2 基态原子中电子的分布原理 泡利不相容原理 每一个原子轨道 最多只能容纳两个自旋方向相反的电子 能量最低原理 原子为基态时 电子尽可能地分布在能级较低的轨道上 使原子处于能级最低状态洪特规则 在同一亚层的等价轨道中 电子尽可能地单独分布在不同的轨道上 且自旋方向相同 如7N1s22s22p3 2 2s 4 3s 1 1s 6 4s 9 5s 16 7s 3 2p 12 6s 5 3p 8 4p 11 5p 15 6p 19 7p 7 3d 10 4d 14 5d 18 6d 13 4f 17 5f 应用核外电子填入轨道顺序图 根据泡利不相容原理 能量最低原理 洪特规则 可以写出元素原子的核外电子分布式 如19K1s22s22p63s23p64s1 26Fe1s22s22p63s23p63d64s2 核外电子填入轨道的顺序 洪特规则的特例 等价轨道全充满 半充满或全空的状态是比较稳定的 全充满 S2 p6 d10 f14半充满 s1 p3 d5 f7全空 S0 p0 d0 f0 46Pd 47Ag 79Au 42Mo 64Gd 96Cm等 基态原子外层电子填充顺序 ns n 2 f n 1 d np价电子电离顺序 np ns n 1 d n 2 f 3 简单基态阳离子的电子分布 例26Fe1s22s22p63s23p63d64s2或 Ar 3d64s2Fe2 1s22s22p63s23p63d6或 Ar 3d6 原子实 电子排布式中 内层已达到稀有气体结构的部分 用稀有气体的元素符号加方括号表示 经验规律 4元素周期表和元素周期律 1 元素周期表的特点 元素周期律 元素的性质随着原子序数的递增而呈周期性变化的规律周期律的直观表现形式是元素周期表 周期 元素周期表的每一行是一个周期 周期对应于能级组 元素在周期表中所处的周期数等于它的最外电子层数 每一个周期所含元素数目与对应能级组最多能容纳的电子数目一致 6s5s4s3s2s1s 6p5p4p3p2p 5d4d3d 4f PONMLK 1s 2p2s 3p3s 4p3d4s 5p4d5s 6p5d4f6s 近似能级图 元素个数 321818882 族 性质相似的元素归为一族 族对应原子的价电子构型 ns1 2 n 1 d1 9ns0 2ns2np1 6 n 1 d10ns1 2 价电子 原子参加化学反应时能够用于成键的最高电子数目 有主族 副族 零族和第八族 S d ds p f 最后一个电子一般填入次外层d亚层 区 最后一个电子一般填入次外层d亚层 最后一个电子填入s亚层 最后一个电子填入外层p亚层 最后一个电子一般填入外数第三层f亚层 区 价层电子构型相似的元素集中的区域 2 原子结构与元素性质周期性 原子的电子层结构随核电荷的递增呈周期性变化 促使元素的某些性质呈周期性变化 如原子半径 电离能 电子亲合能 电负性 原子半径 共价半径 两个相同原子形成共价键时 其核间距离的一半 d 198pmr Cl 99pm d 154pmr C 77pm 金属半径 金属单质晶体中 两个相邻金属原子核间距离的一半 d 256pmr Cu 128pm 范德华半径 单质分子晶体中 两个相邻分子核间距离的一半 d 320pmr Ne 160pm 非金属为共价半径 金属为金属半径 稀有气体为范德华半径 变化规律 同一周期的d区元素 自左到右 随核电荷的增加 原子半径略有减小 IB族开始 反而有所增加 同一周期的主族元素 自左到右 随核电荷的增加 原子半径逐渐减小 族号 同一主族元素 自上往下 原子半径逐渐增大 同一副族元素 除 B外 自上往下 原子半径一般略有增大 五 六周期同族元素原子半径十分相似 电负性 p 分子中元素原子吸引电子的能力以最活泼非金属元素原子 p F 4 0为基础 计算其它元素原子的电负性值 电负性越大 元素原子吸引电子能力越强 即元素原子越易得到电子 越难失去电子 电负性越小 元素原子吸引电子能力越弱 即元素原子越难得到电子 越易失去电子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论