




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学复习专题之动态问题2近年来,随着九年义务教育课程标准的深入实施,动态几何已悄悄进入到中考数学试题中,而且要求越来越高,越来越突出探究能力的考查。编制好的动态几何的题已成为中考命题者努力追求的目标之一。下面谈谈中考数学中动态几何的一些解题策略。例1:已知O的弦AB的长等于O的半径,点C在O上变化(不与A、B)重合,求ACB的大小 .分析:点C的变化是否影响ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则AOB=600,则由同弧所对的圆心角与圆周角的关系得出:ACB=AOB=300,当点C在劣弧AB上变化时,ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:ACB=1500,因此,本题的答案有两个,分别为300或1500.反思:本题通过点C在圆上运动的不确定性而引起结果的不唯一性。从而需要分类讨论。这样由点C的运动变化性而引起的分类讨论在解题中经常出现。变式1:已知ABC是半径为2的圆内接三角形,若,求C的大小.本题与例1的区别只是AB与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB中,则,即,从而当点C在优弧AB上变化时,C所对的弧是劣弧AB,它的大小为劣弧AB的一半,即,当点C在劣弧AB上变化时,C所对的弧是优弧AB,它的大小为优弧AB的一半,由AOB=1200得,优弧AB的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:C=1200,因此或C=1200.变式2: 如图,半经为1的半圆O上有两个动点A、B,若AB=1,(1) 判断AOB的大小是否会随点A、B的变化而变化,若变化,求出变化范围,若不变化,求出它的值。(2) 四边形ABCD的面积的最大值。解:(1)由于AB=OA=OB,所以三角形AOB为等边三角形,则AOB=600,即AOB的大小不会随点A、B的变化而变化。(2)四边形ABCD的面积由三个三角形组成,其中三角形AOB的面积为,而三角形AOD与三角形BOC的面积之和为,又由梯形的中位线定理得三角形AOD与三角形BOC的面积之和,要四边形ABCD的面积最大,只需EH最大,显然EHOE=,当ABCD时,EH=OE,因此四边形ABCD的面积最大值为+=.对于本题同学们还可以继续思考:四边形ABCD的周长的变化范围.变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分别为A、B,另一个顶点C在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(广州市2000年考题) 分析:要使三角形ABC的面积最大,而三角形ABC的底边AB为圆的直径为常量,只需AB边上的高最大即可。过点C作CDAB于点D,连结CO,由于CDCO,当O与D重合,CD=CO,因此,当CO与AB垂直时,即C为半圆弧的中点时,其三角形ABC的面积最大。本题也可以先猜想,点C为半圆弧的中点时,三角形ABC的面积最大,故只需另选一个位置C1(不与C重合),证明三角形ABC的面积大于三角形ABC1的面积即可。如图显然三角形 ABC1的面积=ABC1D,而C1D C1O=CO,则三角形 ABC1的面积=ABC1DABC1O=三角形 ABC的面积,因此,对于除点C外的任意点C1,都有三角形 ABC1的面积小于三角形三角形 ABC的面积,故点C为半圆中点时,三角形ABC面积最大.本题还可研究三角形ABC的周长何时最大的问题。提示:利用周长与面积之间的关系。要三角形ABC的周长最大,AB为常数,只需AC+BC最大,而(AC+BC)2=AC2+CB2+2ACBC=AB2+4ABC的面积,因此ABC的面积最大时,AC+BC最大,从而ABC的周长最大。从以上一道题及其三个变式的研究我们不难发现,解决动态几何问题的常见方法有:一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,O1和O2内切于A,O1的半径为3,O2的半径为2,点P为O1上的任一点(与点A不重合),直线PA交O2于点C,PB切O2于点B,则的值为(A) (B) (C) (D)分析:本题是一道选择题,给出四个答案有且只有一个是正确的,因此可以取一个特殊位置进行研究,当点P满足PBAB时,可以通过计算得出PB=BCAP=BPAB,因此 BC=, 在三角形BPC中,PC=,所以,=选(B)当然,本题还可以根据三角形相似得,即可计算出结论。作为一道选择题,到此已经完成,但如果是一道解答题,我们得出的结论只是一个特殊情况,还要进一步证明对一般情况也成立。例3:如图,在等腰直角三角形ABC中,斜边BC=4,OABC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。(1) 判断OEF的形状,并加以证明。(2) 判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.(3) AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。分析:本题结论很难发现,先从特殊情况入手。最特殊情况为E、F分别为AB、AC中点,显然有EOF为等腰直角三角形。还可发现当点E与A无限接近时,点F与点C无限接近,此时EOF无限接近AOC,而AOC为等腰直角三角形,几种特殊情况都可以得出EOF为等腰直角三角形。一般情况下成立吗?OE与OF相等吗?EOF为直角吗?能否证明。如果它们成立,便可以推出三角形OFC与三角形OEA全等,一般情况下这两个三角形全等吗?不难从题目的条件可得:OA=OC,OCF=OAE,而AE=CF,则OEAOFC,则OE=OF,且FOC=EOA,所以EOF=EOA+AOF=FOC+FOA=900,则EOF为直角,故EOF为等腰直角三角形。二、 动手实践,操作确认例4(2003年广州市中考试题)在O中,C为弧AB的中点,D为弧AC上任一点(与A、C不重合),则(A)AC+CB=AD+DB (B) AC+CBAD+DB (D) AC+CB与AD+DB的大小关系不确定分析:本题可以通过动手操作一下,度量AC、CB、AD、DB的长度,可以尝试换几个位置量一量,得出结论(C)例5:如图,过两同心圆的小圆上任一点C分别作小圆的直径CA和非直径的弦CD,延长CA和CD与大圆分别交于点B、E,则下列结论中正确的是( * ) (A) (B) (C)(D)的大小不确定分析:本题可以通过度量的方法进行,选(B)本题也可以可以证明得出结论,连结DO、EO,则在三角形OED中,由于两边之差小于第三边,则OEODDE,即OBOADE,因此,即三、 建立联系,计算说明例6:如图,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 .分析:能否将DN和NM进行转化,与建立三角形两边之和大于第三边等问题,很自然地想到轴对称问题,由于ABCD为正方形,因此连结BN,显然有ND=NB,则问题就转化为BN+NM的最小值问题了,一般情况下:BN+NMBM,只有在B、N、M三点共线时,BN+NM=BM,因此DN+MN的最小值为BM=本题通过建立平面上三个点中构成的三角形中的两边之和大于第三边及共线时的两边之和等于第三边的特殊情况求最小值,最后通过勾股定理计算得出结论。例7:如图,在等腰直角三角形ABC中,斜边BC=4,OABC于O,点E和点F分别在边AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与B、A重合。(2) 判断四边形AEOF的面积是否随点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值.(3) AEF的面积是否随着点E、F的变化而变化,若变化,求其变化范围,若不变化,求它的值。(即例3的第2、第3问)分析:(2)本题的方法很多,其一,可以建立四边形AEOF与AE长的函数关系式,如设AE=x,则AF=,而三角形AOB的面积与三角形AOE的面积之比=,而三角形AOB的面积=,则三角形AOE的面积=,同理三角形AOF的面积=,因此四边形AEOF的面积=;即AEOF的面积不会随点E、F的变化而变化,是一个定值,且为2. 当然,本题也可以这样思考,由于三角形AOE与三角形COF全等,则四边形AEOF的面积与三角形AOC的面积相等,而AOC的面积为2,因此AEOF的面积不会随点E、F的变化而变化,是一个定值,且为2. 本题通过建立函数关系或有关图形之间的关系,然后通过简单的计算得出结论的方法应用比较广泛. 第(3)问,也可以通过建立函数关系求得, AEF的面积=,又的变化范围为,由二次函数知识得AEF的面积的范围为:AEF的面积.本题也可以根据三角形AEF与三角形OEF的面积关系确定AEF的面积范围:不难证明AEF的面积OEF的面积,它们公用边EF,取EF的中点H,显然由于OEF为等腰直角三角形,则OHEF,作AGEF,显然AGAH=AG(=),所以AEF的面积OEF的面积,而它们的和为2,因此AEF的面积.本题包容的内涵十分丰富,还可以提出很多问题研究:比如,比较线段EF与AO长度大小等(可以通过A、E、O、F四点在以EF为直径的圆上得出很多结论)例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果、同时出发,用t秒表示移动的时间(0 t 6),那么:(1)当t为何值时,三角形QAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与ABC相似?分析:(1)当三角形QAP为等腰三角形时,由于A为直角,只能是AQ=AP,建立等量关系,即时,三角形QAP为等腰三角形;(2)四边形QAPC的面积=ABCD的面积三角形QDC的面积三角形PBC的面积=36,即当P、Q运动时,四边形QAPC的面积不变。(3)显然有两种情况:PAQABC,QAPABC,由相似关系得或,解之得或建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。作为训练同学们可以综合上述方法求解:练习1:2003年广州市中考压轴题(全卷得分最低的一道)已知ABC为直角三角形,AC=5,BC=12,ACB为直角,P是AB边上的动点(与点A、B不重合),Q是BC边上动点(与点B、C不重合)(1) 如图,当PQAC,且Q为BC的中点,求线段CP的长。(2) 当PQ与AC不平行时,CPQ可能为直角三角形吗?若有可能,求出线段CQ的长的取值范围;若不可能,请说明理由。第1问很易得出P为AB中点,则CP=第2问:如果CPQ为直角三角形,由于PQ与AC不平行,则Q不可能为直角又点P不与A重合,则PCQ也不可能为直角,只能是CPQ为直角,即以CQ为直径的圆与AB有交点,设CQ=2x,CQ的中点D到AB的距离DM不大于CD,即,所以,由,即,而,故,亦即时,CPQ可能为直角三角形。当然还有其它方法。同学们可以继续研究。练习2:(广东省2003年中考试题最后一题)在RtABC中,ABAC,BAC90,O为BC的中点,(1)写出点O到ABC的三个顶点 A、B、C距离的大小关系。(2)如果点M、N分别在线段AB、AC上移动,移动中保持ANBM,请判断OMN的形状,并证明你的结论。该题与例3类似,同学们可以仿此研究。一一、探究动态变化中的不变动态几何题是以图形中的一些元素的运动变化为载体,来探究图形中的某些元素之间在变化过程中相互依存关系的本质特征,这些本质特征中也包含“变中不变”的特殊情况所谓“变中不变”,对于一个元素而言,是指该元素虽然处于变化过程中,但它的某些属性不变;对于两个或两个以上的元素而言,是指这些元素虽然处于变化过程中,但它们的某些属性之间的关系不变例1 (宁夏回族自治区)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q(1)试证明:无论点P运动到AB上何处时,都有ADQABQ;(以下问题略)分析与解:正方形ABCD始终关于AC对称,因此,当点P在AB上运动时,不会影响到此结论.例2(广州)如图,扇形OAB的半径OA=3,圆心角AOB=90,点C是上异于A、B的动点,过点C作CDOA于点D,作CEOB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形(2)当点C在上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度(3)求证:是定值分析与解:当点C在上运动时,半径OC的位置发生着变化,但由圆的特性可知,半径OC的长度始终保持不变(1)连结OC交DE于M,由矩形得OMCG,EMDM因为DG=HE所以EMEHDMDG得HMDG(2)DG不变,在矩形ODCE中,DEOC3,所以DG1(3)设CDx,则CE,由得CG所以所以HG31所以3CH2所以二、探究动态变化中的变量关系动态几何题的根本是探究图形中的某些元素之间在变化过程中的相互依存的关系,用数学的眼光来看这些相互依存的关系实际上就是函数关系所以,求图形运动变化过程中某些变量之间的函数解析式是研究这类问题的最常见的形式例3 (广东省)将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.(2)请写出图9中所有的相似三角形(不含全等三角形).EDCHFGBAPyx图1010DCBAE图9(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ABD不动,将ABC向轴的正方向平移到FGH的位置,FH与BD相交于点P,设AF=t,FBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.分析与解:(1),等腰; (2)共有9对相似三角形. DCE、ABE与ACD或BDC两两相似,分别是:DCEABE,DCEACD,DCEBDC,ABEACD,ABEBDC;KABDEAD,ABDEBC;BACEAD,BACEBC;所以,一共有9对相似三角形.(3)由题意知,FPAE, 1PFB,又 1230, PFB230, FPBP.过点P作PKFB于点K,则. AFt,AB8, FB8t,.在RtBPK中,. FBP的面积, S与t之间的函数关系式为: ,或. t的取值范围为:. 作为语言和工具的数学文化能让纷繁复杂的运动变化变得清晰可见三、探究动态变化中的存在与否在动态几何题中探究存在与否,主要包括:探究问题的结论是否成立,探究符合条件的对象是否存在、是否唯一,探究使结论成立的条件等AxyBCO例4 (茂名市)如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且-=5(1)求、的值;(4分)(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由(3分)相关链接 :若是一元二次方程的两根,则 分析与解:(1) 、是方程+c=0的两个根,即方程23+12=0的两个根=,=5,解得 =当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去= (2)四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 又=4=(+)+ 抛物线的顶点(,)即为所求的点D (3)四边形BPOH是以OB为对角线的菱形,点B的坐标为(6,0),根据菱形的性质,点P必是直线=-3与抛物线=-4的交点, 当=3时,=(3)(3)4=4, 在抛物线上存在一点P(3,4),使得四边形BPOH为菱形 四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(3,3),但这一点不在抛物线上四、探究动态变化中的结论推广在动态几何题中,还有一种是探究条件与结论的关系,即当条件发生变化时,结论是否变化或哪些结论可以推广到更一般的情况例5(齐齐哈尔市)已知:正方形中,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点当绕点旋转到时(如图1),易证(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出猜想,并加以证明BBMBCNCNMCNM图1图2图3AAADDD(2)当绕点旋转到如图3的位置时,线段和之间又有怎样的数量关系?请直接写出你的猜想分析与解:(1)成立BMEACDN如图,把绕点顺时针,得到,则可证得三点共线.证明过程中,证得:证得:(2)五、探究动态变化中的精彩瞬间研究动态几何题的最终目的是研究变化过程中能否有我们期待或遐想的精彩瞬间出现,如果出现了,它应该在什么情况下出现例6(齐齐哈尔市)如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足(1)求点,点的坐标(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由分析与解:(1),点,点分别在轴,轴的正半轴上(2)求得(3);二类型之一 探索性的动态题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断。探索型问题一般没有明确的结论,没有固定的形式和方法,需要学生自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需要的结论或方法或条件,用考察学生的分析问题和解决问题的能力和创新意识。1.(宜昌市)如图,在RtABC中,AB=AC,P是边AB(含端点)上的动点,过P作BC的垂线PR,R为垂足,PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E、F恰好分别在边BC、AC上.(1)ABC与SBR是否相似?说明理由;(2)请你探索线段TS与PA的长度之间的关系;(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.2.(南京市)如图,已知的半径为6cm,射线经过点,射线与相切于点两点同时从点出发,点以5cm/s的速度沿射线方向运动,点以4cm/s的速度沿射线方向运动设运动时间为s(1)求的长;(2)当为何值时,直线与相切?类型之二 存在性动态题存在性动态题运用几何计算进行探索的综合型问题,要注意相关的条件,可以先假设结论成立,然后通过计算求相应的值,再作存在性的判断. 3.如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0)(1)试说明ABC是等腰三角形;(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度当其中一个动点到达终点时,他们都停止运动设M运动t秒时,MON的面积为S 求S与t的函数关系式; 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;在运动过程中,当MON为直角三角形时,求t的值4(湖州市) 已知:在矩形中,分别以所在直线为轴和轴,建立如图所示的平面直角坐标系是边上的一个动点(不与重合),过点的反比例函数的图象与边交于点(1)求证:与的面积相等;(2)记,求当为何值时,有最大值,最大值为多少?(3)请探索:是否存在这样的点,使得将沿对折后,点恰好落在上?若存在,求出点的坐标;若不存在,请说明理由5.(白银市)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3)平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒)(1) 点A的坐标是_,点C的坐标是_; (2) 当t= 秒或 秒时,MN=AC;(3) 设OMN的面积为S,求S与t的函数关系式; (4) 探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由类型之三 开放性动态题开放性问题的条件或结论不给出,即条件开放或结论开放,需要我们充分利用自己的想像,大胆猜测,发现问题的结论,寻找解决问题的方法,正确选择解题思路。解答开放性问题的思维方法及途径是多样的,无常规思维模式。开放性问题的条件、结论和方法不是唯一的,要对问题充分理解,分析条件引出结论,达到完善求解的目的。6.(苏州)如图,在等腰梯形中,动点从点出发沿以每秒1个单位的速度向终点运动,动点从点出发沿以每秒2个单位的速度向点运动两点同时出发,当点到达点时,点随之停止运动(1)梯形的面积等于 ;(2)当时,P点离开D点的时间等于 秒;(3)当三点构成直角三角形时,点离开点多少时间?7.(福州)如图,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t2时,判断BPQ的形状,并说明理由;(2)设BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR/BA交AC于点R,连结PR,当t为何值时,APRPRQ?8.(苏州)课堂上,老师将图中AOB绕O点逆时针旋转,在旋转中发现图形的形状和大小不变,但位置发生了变化当AOB旋转90时,得到A1OB1已知A(4,2),B(3,0)(1)A1OB1的面积是 ;A1点的坐标为( , );B1点的坐标为( , );(2)课后,小玲和小惠对该问题继续进行探究,将图中AOB绕AO的中点C(2,1)逆时针旋转90得到AOB,设OB交OA于D,OA交x轴于E此时A,O和B的坐标分别为(1,3),(3,-1)和(3,2),且OB经过B点在刚才的旋转过程中,小玲和小惠发现旋转中的三角形与AOB重叠部分的面积不断变小,旋转到90时重叠部分的面积(即四边形CEBD的面积)最小,求四边形CEBD的面积(3)在(2)的条件下,AOB外接圆的半径等于 参考答案1.【解析】要想证明ABC与SBR相似,只要证明其中的两个角相等即可;要想得到TS=PA,只要证明TPSPFA即可;对于(3),需要建立正方形PTEF的面积y与AP的函数关系式,利用函数的极值来解决.【答案】解:(1)RS是直角PRB的平分线,PRSBRS45.在ABC与SBR中,CBRS45,B是公共角,ABCSBR. (2)线段TS的长度与PA相等.四边形PTEF是正方形,PFPT,SPTFPA180TPF90,在RtPFA中,PFA FPA90,PFATPS,RtPAFRtTSP,PATS.当点P运动到使得T与R重合时,这时PFA与TSP都是等腰直角三角形且底边相等,即有PATS. 由以上可知,线段ST的长度与PA相等.(3)由题意,RS是等腰RtPRB的底边PB上的高,PSBS, BSPSPA1, PS.设PA的长为x,易知AF=PS,则yPFPAPS,得yx(),即y,(5分)根据二次函数的性质,当x时,y有最小值为.如图2,当点P运动使得T与R重合时,PATS为最大.易证等腰RtPAF等腰RtPSR等腰RtBSR,PA.如图3,当P与A重合时,得x0.x的取值范围是0x.当x的值由0增大到时,y的值由减小到当x的值由增大到时,y的值由增大到,在点P的运动过程中,正方形PTEF面积y的最小值是,y的最大值是.2.【解析】本题是双动点问题,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。【答案】解:(1)连接与相切于点,即,(2)过点作,垂足为点的运动速度为5cm/s,点的运动速度为4cm/s,运动时间为s,四边形为矩形,的半径为6,时,直线与相切当运动到如图1所示的位置由,得解得当运动到如图2所示的位置由,得解得所以,当为0.5s或3.5s时直线与相切3.【答案】(1)将代入,得,点的坐标为;将代入,得,点的坐标为在中,又,是等腰三角形(2),故点同时开始运动,同时停止运动过点作轴于,则,当时(如图甲),当时(如图乙),(注:若将的取值范围分别写为和也可以)存在的情形当时,解得,(不合题意,舍去),故当时,秒当轴时,为直角三角形,又,当点分别运动到点时,为直角三角形,故为直角三角形时,秒或秒4. 【答案】(1)证明:设,与的面积分别为,由题意得,即与的面积相等(2)由题意知:两点坐标分别为,当时,有最大值(3)解:设存在这样的点,将沿对折后,点恰好落在边上的点,过点作,垂足为由题意得:,又,解得存在符合条件的点,它的坐标为5.【解析】该题所蕴涵的知识量较大,并以动态形式,着重考查了四边形、三角形、相似形、平面直角坐标系、二次函数、不等式组等知识点,且解法思路多样化,易于发展学生的各种思维能力。【答案】解:(1)(4,0),(0,3);(2) 2,6;(3) 当0t4时,OM=t由OMNOAC,得, ON=,S=当4t8时,如图, OD=t, AD= t4 方法一:由DAMAOC,可得AM=, BM=6由BMNBAC,可得BN=8t, CN=t4 S=矩形OABC的面积RtOAM的面积 RtMBN的面积 RtNCO的面积=12-(8t)(6-)-=方法二:易知四边形ADNC是平行四边形, CN=AD=t-4,BN=8-t由BMNBAC,可得BM=6, AM=,以下同方法一(4) 有最大值方法一:当0t4时, 抛物线S=的开口向上,在对称轴t=0的右边, S随t的增大而增大, 当t=4时,S可取到最大值=6;当4t8时, 抛物线S=的开口向下,它的顶点是(4,6), S6 综上,当t=4时,S有最大值6 方法二: S= 当0t8时,画出S与t的函数关系图像,如图所示显然,当t=4时,S有最大值6 6.【解析】这是一个集几何、代数知识于一体的综合题,既能考查学生的创造性思维品质,又能体现学生的实际水平和应变能力,其解题策略是“动”中求“静”,“一般”中见“特殊”,抓住要害,各个击破【答案】解:(1)36;(2)秒;(3)当三点构成直角三角形时,有两种情况:当时,设点离开点秒,作于,当时,点离开点秒当时,设点离开点秒,当时,点离开点秒由知,当三点构成直角三角形时,点离开点秒或秒7.【解析】解决运动型的问题,关键是将其运用过程在头脑当中预演一遍,找准其运用时各个量的变化规律,再动中取静,得到相关量之间的关系【答案】解:(1)是等边三角形当时又,是等边三角形(2)过作,垂足为由,得由,得(3),又,是等边三角形,四边形是平行四边形又,即解得当时,8.【解析】这是一道坐标几何题,中考中的坐标几何题,融丰富的几何图象于一题,包含的知识点较多;代数变换(包括数式变换、方程变换、不等式变换)与几何推理巧妙融合,交相辉映,数形结合思想和方法得到充分运用.本题(2)中的面积的计算是根据旋转不变性,构造全等三角形,将四边形的面积进行转化,这是一种重要的数学思想方法.【答案】:证明:(1)3,(2)作于,轴于,的横坐标相等,轴,四边形为矩形又,矩形为正方形,在和中,(3)三1如图13,已知RtABC中,C90,AC=3,BC=4,点E在AC上,E与A、C均不重合.图13(1)若点F在AB上,且EF平分RtABC的周长,设AE=,AEF的面积为,求与的函数关系式;(2)若点F在折线ABC上移动,是否存在直线EF将RtABC的周长与面积同时平分?若存在,求出AE的长;若不存在,请说出理由。2如图,已知A(8,0),B(0,6),两个动点P、Q同时在OAB的边上按逆时针方向(OABO)运动,开始时点P在点B位置,点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位(1)在前3秒内,求OPQ的最大面积;(2)在前10秒内,求P、Q两点之间的最小距离,并求此时点P、Q的坐标;(3)在前15秒内,探究PQ平行于OAB一边的情况,并求平行时点P、Q的坐标3 (本题满分9分)如图,在平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(3,0)、(3,4),动点M,N分别从O,B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动;点N沿BC向终点C运动,过点N作NPBC,交AC于点P,连接MP.已知动点运动了x秒.(1)点P的坐标为(_,_)(用含x的代数式表示);(2)试求MPA 面积的最大值,并求此时x的值;(3)请你探索:当x为何值时,MPA是一个等腰三 角形? 4(本小题满分12分)在直角梯形中,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段。(1)分别求出梯形中的长度;(2)写出图3中两点的坐标;(3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。(图3)(图2)(图1)5(本题14分)如图1,在平面直角坐标系中,已知点,点在正半轴上,且动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒在轴上取两点作等边(1)求直线的解析式;(2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;(3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值(图1)(图2)Oxy(第24题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国移动荆州市2025秋招行业解决方案岗位专业追问清单及参考回答
- 资阳市中石油2025秋招面试半结构化模拟题及答案油田勘探开发岗
- 郴州市中石油2025秋招笔试英语专练题库及答案
- 2025年会计文案考试题及答案
- 历史玄学考试试题及答案
- 平凉市中石化2025秋招面试半结构化模拟题及答案财务与审计岗
- 廊坊市中石化2025秋招笔试英语专练题库及答案
- 忻州市中储粮2025秋招购销统计岗高频笔试题库含答案
- 衢州市中石油2025秋招笔试模拟题含答案法律与合规岗
- 中国广电上饶市2025秋招笔试行测题库及答案财务审计类
- 2025机采棉作业合同协议书范本
- 树木学试题及答案北林
- 财政补贴政策在促进农村电商发展的扶持效果可行性分析报告
- 2025第三季度作风建设党课以忠诚廉洁担当的政治品格奋力书写高质量发展新答卷
- 打井设备成套转让协议书
- 组织结构的权力与权威
- 宠物急救标准化流程
- 2025届广东广州地铁集团有限公司校园招聘笔试参考题库附带答案详解(10套)
- 教师信息技术数字资源开发计划
- 低钾血症护理常规业务学习
- 送货服务方案
评论
0/150
提交评论