数学北师大版八年级上册《三角形内角和定理的证明》.doc_第1页
数学北师大版八年级上册《三角形内角和定理的证明》.doc_第2页
数学北师大版八年级上册《三角形内角和定理的证明》.doc_第3页
数学北师大版八年级上册《三角形内角和定理的证明》.doc_第4页
数学北师大版八年级上册《三角形内角和定理的证明》.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版八年级上册数学第七章平行线的证明7.5 三角形内角和定理(第一课时)中卫市第五中学 张艳玲一、教材分析(一)教材的地位与作用:本节是北师大版教材八年级上册第七章平行线的证明第五节的内容。通过上一节课的学习,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。本节课旨在利用平行线的相关知识来证明三角形的内角和定理以及灵活运用这个定理解决相关问题,使学生突破原有的形象思维限制,引入几何证明中的重要方法添加辅助线法,从而为下一节三角形外角的学习作好铺垫,同时也为以后继续学习几何证明打下良好的基础。因此,本节课的内容在教材编排上起着承上启下的重要作用。(二)教学目标:知识与技能:掌握三角形内角和定理的证明,灵活运用三角形内角和定理解决相关问题。过程与方法:经历探索与证明的过程,培养学生探索、归纳的能力,一题多解的能力、转化知识并解决问题的能力,发展学生的推理能力。 情感态度与价值观:初步体会思维的多向性,引导学生个性发展,使学生体验到解决问题的成就感,体会“合作双赢”的理念。(三)教学重点、难点重点:探索三角形内角和定理的证明过程及其简单的应用。难点:在三角形内角和定理的证明过程中正确添加辅助线。二、学情分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力。而本节课是建立在学生掌握了平行线的判定定理与性质定理以及它们的严格证明的基础上展开的,因此,学生具有良好的基础。活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验。三、教法和学法教法:教师采用点拨的方法,启发学生主动思考,尝试运用多种方法来证明三角形的内角和定理,使整个课堂生动有趣,极大限度地培养学生观察问题、发现问题、归纳解决问题的能力,体现新课程标准中的知识与技能、过程与方法及情感、态度与价值观的统一。学法:教学中逐步设置疑问,让学生动手、动脑、动口、合作探究,积极参与知识获取的全过程,渗透多观察、多动脑的研讨式学习方法,培养学生学习数学的兴趣和合作探究精神,运用已有知识和经验,通过交流、类比、转化、证明等方法寻找解决问题的途径和策略。四、教学过程:本节课的设计分为七个环节:情境引入实验探究推理证明学以致用巩固提高交流小结推荐作业。第一环节:情境引入情境剧表演:旁白:大家好,欢迎来到数学国际法庭。今天,三兄弟在这见面了,下面让我们来听一听三兄弟在谈些什么呢?直角三角形:大家好,我是直角三角形。我有一个角是直角,最特殊的角,我的内角和不会小。钝角三角形:嗨,大家好,我是钝角三角形。我的钝角谁比得了,我的内角和一定是你们之间最大的。锐角三角形:大家好,我是锐角三角形。我的三角形是最大的(面积最大),所以,我的内角和才是最大的。我的大,我的大,我的大法官:请大家评判一下,三兄弟到底谁对谁错?学生回答:“三角形内角和是180,所以他们都是错的。教师用几何画板演示:不管是锐角三角形、直角三角形、钝角三角形,内角和都是180,从而引出课题,板书课题,三角形的内角和等于180。教学效果:通过表演情景剧,吸引学生的眼球,让学生能够很快进入学习状态,从心理上感知这节课的内容很简单,排除学生对几何证明的胆怯情绪。第二环节:实验探究让学生分小组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、撕拼或折叠的方法,然后让每个学生用准备好的三角形卡片将它的内角撕下,试着拼折看。通过小组合作交流最后师生共同归纳总结拼图方法。方法一:度量法:将三角形的三个内角分别度量出来,再将它们相加,正好等于180。方法二:将三角形的三个角折拼成一个平角。指定一位同学上台完成折叠过程。具体方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3),最后得图(4)所示的结果。(1) (2) (3) (4)方法三:撕拼法:实验1:将纸片三角形三顶角剪下,随意将它们拼凑在一起。(指名同学上台展演,其他同学互相展示;对于不同拼法要给于鼓励和肯定。等撕拼展示的同学完成后,还可让其他同学对照模型图抽象出几何图形,培养学生的理性思维意识和细心观察、善于发现问题之关键的能力。)撕拼验证三角形的内角和为180的基本方法如下所示:设计意图:对比度量、撕纸、拼折等探索过程,让学生体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难。但撕拼图和折拼示意图中的平行线为学生搭建了一个台阶,使学生想到把平行线的判定定理逆变成性质定理作平行线构造同位角、内错角、同旁内角或平角来证明。教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用度量、撕纸、折叠的方法可以验证三角形内角和定理,为后面添加辅助线证明定理做好铺垫。第三环节:推理证明刚才的撕纸、折纸都是把三角形的三个内角移到一起,如果不实际移动A和B,你有什么方法可达到同样的效果?根据前面的公理和定理,你能用自己的语言比较简捷的写出这一证明过程吗? 已知:ABC 求证:A+B+C=180(在证明中,当原来的条件不够时,可添加辅助线,从而构造新图形,形成新关系,找到已知与未知桥梁,把问题转化成自己已经会解的情况,这是解决问题常用的方法之一,辅助线通常画成虚线。)方法总结:ABCDE方法1:(作平行线,构造内错角、平角)过A点作DEBCDEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180BAC+B+C=180(等量代换)方法2:(作平行线,构造内错角、同位角、平角)作BC的延长线CD,过点C作射线CEBACEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平行,内错角相等)BCA+ACE+ECD=180A+B+ACB=180(等量代换)你还有新的证法吗?添加辅助线思路:构造平角或平行线 (学生讲解或老师讲解,了解即可)方法3:(作平行线,构造内错角、同旁内角)过点A作ADBC(如图)ADBC,1=C,DAB+ABC=180BAC+B+C=DAB+ABC=180方法4:教师做出辅助线,请学生帮忙证明。(作平行线,构造同位角、内错角、平角)如图,在BC边上任取一点D,过D作DEAB交AC于E,作DFAC交AB于FDEAB1=B,2=4DFAC3=C,A=42=A又1+2+3=180A+B+C=180还有方法吗?一名学生提出过点A做ADBC,垂足为D,B+BAD+ADB=180,ADB=90, B+BAD=90,同理可得:C+CAD=90BAC+B+C=180教师提醒:今天正在证明内角和定理,所以还不能使用,必须是公理或者是证明过的定理才能使用。教师强调:三角形的内角和等于180是成立的,它被称为三角形内角和定理,以后可以直接使用。设计意图:通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益;有意识地培养学生的说理能力、逻辑推理能力、语言表达能力以及一题多思、一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透初中阶段一个重要数学思想转化思想,为学好初中数学打下坚实的基础。教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。第四环节:学以致用 例题1:如图,在ABC中,B=38,C=62,AD是ABC的角平分线,求ADB的度数? AC B D 分析:要求ADB的度数,根据三角形内角和定理可知道B和BAD的度数,BAD的度数可以由BAC的度数得到,而BAC又可以由ABC的内角和来得到。设计意图:通过例题的解析,让学生体会分析问题的基本方法,渗透初中阶段另一数学思想数形结合思想,灵活运用三角形内角和定理来解决问题,达到活用知识的目的。教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,但书写过程可能会不尽人意,教师可以拿一个学生的作业,进行投影,做出详细讲解。第五环节:巩固提高1、直角三角形的两锐角之和是多少度?证明你的结论。已知:在ABC中,C 90 求证:AB90 2、正三角形的每一个内角是多少度?证明你的结论。已知:在ABC中,AB=BC=AC求证: A=BC=60 结论:直角三角形的两个锐角互余。 正三角形的每个内角都是60。3、已知:如图在ABC中,DEBC,A=600, C=700. 求证: ADE=500 第3小题可以鼓励学生采用多种方法解决,拓宽学生的思维能力。设计意图:通过习题,巩固三角形内角和知识,培养学生思维的广阔性;为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享他人的想法,培养学生之间良好的人际关系,拓展了三角形内角和是180的知识外延。教师能全面了解学生对三角形内角和定理内容是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏。教学效果:学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题,可能会在书写过程方面需要老师指导或提醒。第六环节:交流小结采用先让学生归纳补充,然后教师再补充的方式进行。通过这节课的学习:你掌握了哪些知识?学会了哪些思想方法?(3)还有哪些感想和收获?1、证明三角形内角和定理有哪几种方法?(度量、撕拼、折叠、证明)2、辅助线的作法技巧:添加辅助线的实质是通过平行线来移动角构造平行线间的内错角、同位角、同旁内角,构造平角。3、三角形内角和定理的简单应用。设计意图:充分发挥学生的主体意识,培养学生的语言概括能力。教学效果:学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明。第七环节:推荐作业1、必做题:课本第180页随堂练习第1、2题;2、选做题:第180页第4题;3、思考题:第180页第5题。设计意图:作业的布置是对本节课的学习作出及时的反馈,有助于学生了解自己的学习情况,便于教师了解学生掌握的总体情况,可以及时适当的对教学作出调整。教学效果:分层作业,让不同层次的学生都能体验成功的快乐!六、教学反思 三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的平面图形,而且几乎是研究所有其它图形的工具和基础。而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理。因此本节课的设计力图实现以下特点:1、通过撕拼与折纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的目的。2、充分展示学生的个性,体现“学生是学习的主人”这一主题。3、本节的难点是添加辅助线,应该大胆放给学生去交流讨论,并展示出自己的思维过程。本节课我注重了三角形内角和定理的证明的推导过程,在这个过程中留给学生充足的时间进行不同证明方法的尝试,旨在发散学生的思维,巩固、规范学生的证明过程,为今后的进一步学习打下坚实的基础。本节课采取了尽量让学生自己探究、自己发现、自己交流、自己总结的方法,让学生在探究过程中感受收获的喜悦,体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论