圆与方程-习题讲解.docx_第1页
圆与方程-习题讲解.docx_第2页
圆与方程-习题讲解.docx_第3页
圆与方程-习题讲解.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆与方程考纲要求:掌握确定圆的几何要素,掌握圆的标准方程与一般方程能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系能用直线和圆的方程解决一些简单的问题初步了解用代数方法处理几何问题的思想 圆的方程 重难点:1、会根据不同的已知条件,利用待定系数法求圆的标准方程;2、了解圆的一般方程的代数特征,能实现一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F经典例题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标解:设所求的圆的方程为:在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:所求圆的方程为:;得圆心坐标为(4,-3).或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)当堂练习:1点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是( A ) A-1a1 B0a1 Ca1 Da=12点P(m2,5)与圆x2+y2=24的位置关系是( B ) A在圆内 B在圆外 C在圆上 D不确定3方程(x+a)2+(y+b)2=0表示的图形是( B ) A点(a,b) B点(-a,-b) C以(a,b)为圆心的圆 D以(-a,-b)为圆心的圆4已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是( A ) A(x-2)2+(y+3)2=13 B(x+2)2+(y-3)2=13 C(x-2)2+(y+3)2=52 D(x+2)2+(y-3)2=525圆(x-a)2+(y-b)2r2与两坐标轴都相切的充要条件是( C )Aa=b=r B|a|=|b|=r C|a|=|b|=|r|0 D以上皆对 6圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是( A ) A(x+7)2+(y+1)2=1 B(x+7)2+(y+2)2=1 C(x+6)2+(y+1)2=1 D(x+6)2+(y+2)2=17如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为( D ) A(-1,1) B(1,-1) C(-1,0) D(0,-1)8圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是( B ) A 圆心在直线y=x上 B圆心在直线y=x上, 且与两坐标轴均相切 C 圆心在直线y=-x上 D圆心在直线y=-x上, 且与两坐标轴均相切9如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则( C ) AD=0,E=0,F0 BE=0,F=0,D0 CD=0,F=0,E0 DF=0,D0,E010如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F0) 所表示的曲线关于直线y=x对称,那么必有(A ) AD=E BD=F CE=F DD=E=F11方程x4-y4-4x2+4y2=0所表示的曲线是( ) A一个圆 B两条平行直线 C两条平行直线和一个圆 D两条相交直线和一个圆12若a0, 则方程x2+y2+ax-ay=0所表示的图形( D )A关于x轴对称 B关于y轴对称 C关于直线x-y=0对称 D关于直线x+y=0对称13圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是( A ) Ax2+y2-4x+2y+4=0 Bx2+y2-4x-2y-4=0 Cx2+y2-4x+2y-4=0 Dx2+y2+4x+2y+4=014过点P(12,0)且与y轴切于原点的圆的方程为 _(x-6)2+y2=36_15圆(x-4)2+(y-1)2=5内一点P(3,0),则过P点的最短弦的弦长为 _2_,最短弦所在直线方程为_ x+y-3=0_16过点(1,2)总可以向圆x2+y2+kx+2y+k2-15=0作两条切线,则k的取值范围是 _17已知圆x2+y2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是 _(2-,2-)_,距离最远的点的坐标是_(2+,2+)_18已知一圆与直线3x+4y-2=0相切于点P(2,-1),且截x轴的正半轴所得的弦的长为8,求此圆的标准方程解:设所求圆圆心为Q(a,b),则直线PQ与直线3x+4y-2=0垂直,即,(1) 且圆半径r=|PQ|=,(2)由(1)、(2)两式,解得a=5或a= -(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25.19已知圆C:x2+y2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程解:圆C的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为=1或y=kx, 由x+y-a=0,d=. 由kx-y=0,d=. 综上,圆的切线方程为x+y-5=0或(2)x-y=0.20已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+90表示一个圆,(1)求t的取值范围;(2)求该圆半径r的取值范围 解:(1)方程表示一个圆的充要条件是D2+E2-4F4(t+3)2+4(1-4t2)2-4(16t4+9)0,即:7t2-6t-10,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论