



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二项式定理说课稿 丁宁一.教材分析本节课在教材中的地位和作用“二项式定理”是安排在排列组合内容后的知识块,它是初中多项式乘法的后续内容,它所研究的是一种特殊的多项式二项式乘方的展开式。它与后面学习的概率理论中的二项分布有内在联系,利用二项式定理可进一步深化对组合数的认识,因此,二项式定理起着承上启下的作用,是本章教学的一个重点。二学情分析有利因素:学生已有和的平方公式和组合有关的旧知识,从这些地方均能找到新知识的“最佳生长点”。但不利因素为:农村学生创新思维能力较差,在学习过程中,很多学生只重视定理,公式的结论,而不重视其形成过程。根据以上具体情况,结合新课标的理念,制定了如下的教学目标和教学重、难点。三教学目标知识目标:让学生了解不完全归纳法,掌握二项式定理,并能灵活运用二项式定理解决一些简单的问题。技能目标:在学生参与二项式定理形成过程的探讨中,培养学生观察、猜想、归纳的能力,以及通过拓展题培养学生的化归意识与知识迁移的能力。情感目标:通过“二次式定理”的学习,让学生感受数学内在的和谐美、对称美,培养学生探索数学问题的兴趣。四教学重、难点:利用二项式定理展开二项式; 二项式定理的推导 五。教学方法:为了突破难点,突出重点,我采用化归的思想,将二项展开过程化归到熟悉的有放回取球问题;设计7个问题串贯穿课堂主线,启发引导问题的解决;并采用分组合作探究的形式分析解决问题。 六.教学过程课堂环节问题串答(预设)设计意图一、知识回顾我们学了哪些计数方法?枚举法、分类计数原理、分步计数原理、排列、组合为选择正确便捷的方法得出各项系数铺垫二、创设情境问题1:桶里有大小相同,质地相同的a、b两小球,有放回地取两次,有几种不同的取法?请分别用枚举法、分类计数原理、分步计数原理进行分析.枚举法:aa ab ba bb共4种分步计数原理:第一步,第一次取球有两种方法;第二步,第二次取球有两种方法,所以一共22=4种.分类计数原理:第一类,都取a,1种;第二类,取不同,2种;第三类,都取b,1种;共4种回顾各种计数方法的思维过程和解题过程,保障后面能选取最便捷的方法,并且运用该方法能准确、快速地得到答案.三、教授新课问题2:请将逐项展开并整理,思考问题1与问题2的处理过程之间有何联系与区别?同:展开的过程就是取小球的过程.异:球ab、ba属两种方法,展开式中的ab、ba可合并同类项取球是同学们极为熟悉的例子,解决该问题已经得心应手,并已深刻理解。将新问题回归到已掌握的知识上,便于新问题的解决.问题3:将展开并整理后,各项的系数与取球问题有何联系?整理后,各项系数即取球问题中分类记数原理的各类结果数.初步体会展开式中系数的由来.问题4:桶里有大小相同,质地相同的ab两小球,有放回地取三次,有几种不同取法?请分别用枚举法、分类计数原理、分步计数原理进行分析.枚举法:(略)分步记数原理:222=8分类记数原理:第一类,三次都不取b,种;第二类,任一次取b,其他两次取a, 种;第三类,任两次取b,其他一次取a, 种;第四类,全都取b,种,即共+=8种.取两次的时候,学生可以用枚举法在转念间就解决问题,所以就会忽视了分类记数原理和分步记数原理对于解决该问题的优势,取三次就相对困难,让学生体会分类记数原理和分步记数原理对于解决多次取球问题的优越性.问题5:谁能最快写出将展开整理后的多项式,并说出各项系数和?再次理解取球过程与展开式的联系,特别是展开式各项的系数与取球过程中分类记数原理的联系、各项系数和与取球方法总数的联系.练习:写出将展开并整理后的多项式,并说出各项系数和?巩固展开式各项、各项系数及系数和得出的方法.问题6:将展开并整理后,有哪些项?为什么?让学生体会从特殊到一般,归纳并证明的过程.板书项数: 第一项 第二项 第n+1项项: 二项式定理:= + + + 二项式系数: 二项式系数和:+=问题7: 展开并整理后,各项的项数、次数有什么规律?你能根据规律归纳一个式子,可以用来表示其中任一项吗?1. a的次数与b的次数和为n;2. 组合数上标与b的次数相同.让学生在理解二项式定理得出的过程基础上,熟练掌握二项式定理的特点.板书项数: 第一项 第二项 第n+1项项: 二项式定理:= + + + 二项式系数: 二项式系数和:+=通项:四、数学史教育在我国被称为贾宪三角或杨辉三角,一般认为是北宋数学家贾宪所首创.它记载于杨辉的详解九章算法(1261)之中.在阿拉伯数学家卡西的著作算术之钥(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同.在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图.但一般却称之为帕斯卡三角形,因为帕斯卡在1654年也发现了这个结果.无论如何,二项式定理的发现,在我国比在欧洲至少要早300年.1665年,牛顿把二项式定理推广到n为分数与负数的情形,给出了的展开式.五、课堂巩固例 已知二项式(1)请写出它的展开式;(2)请写出第4项的二项式系数;(3)请写出第4项的系数;(4)请写出含项的系数.二项式定理的应用(知识点的应用)练:已知二项式(1)求展开式第四项的二项式系数;(2)求展开式第4项的系数;(3)求展开式第4项;(4)求展开式中的有理项.巩固基本知识、基本概念.六、课堂提升变式提升:请说出的展开式中(1)含项的系数;(2)含项的系数.在理解二项式定理得出的思想方法基础上,运用该思想方法解决新问题,巩固该思想方法(思想方法的应用)七、课堂小结请大家思考:1.本节课新学习的基本知识点;2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 表语从句考试题及答案
- 宇宙传达测试题及答案
- 实验安全考试试题及答案
- 家电公司固定资产管理规章
- 特种锅炉考试题及答案
- 肺炎护理考试题及答案
- 戏剧课程:释放天性提升自信
- cnas考试题及答案
- 道路结构试题及答案
- 花瓣游戏测试题及答案
- 劳务合同范本(劳务合同范本电子版)
- 船舶公司劳动人事管理制度
- 中交市政交通工程标准化施工指南
- 2022年南昌市红谷滩区教育系统事业单位教师招聘考试真题及答案
- 四年级数学下册脱式计算练习题200道
- 华为性格测试攻略
- 幼儿园“1530”安全教育实施方案
- GB/T 21720-2022农贸市场管理技术规范
- GB/T 9119-2010板式平焊钢制管法兰
- 高分通过司法考试笔记之三国法
- 线路工程施工质量三级自检报告(范文)
评论
0/150
提交评论