




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数值分析大作业三一、 算法设计方案:1、使用牛顿迭代法(简单迭代法不收敛),对原题中给出的,()的11*21组分别求出原题中方程组的一组解,于是得到一组和对应的。2、对于已求出的,使用分片二次代数插值法对原题中关于的数表进行插值得到。于是产生了z=f(x,y)的11*21个数值解。3、从k=1开始逐渐增大k的值,并使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,得到每次的。当时结束计算,输出拟合结果。4、计算的值并输出结果,以观察逼近的效果。其中。二、源程序:#include #include #define N 6 /矩阵的阶;#define M 4 /方程组未知数个数; #define EPSL 1.0e-12 /迭代的精度水平;#define K 10 /最小二乘法拟合时的次数上限;#define SIGSUM 1.0e-7#define L 500 /迭代最大次数;#define X 11#define Y 21double mat_uN=0,0.4,0.8,1.2,1.6,2.0, mat_tN=0,0.2,0.4,0.6,0.8,1.0, mat_ztuNN= -0.5,-0.34,0.14,0.94,2.06,3.5, -0.42,-0.5,-0.26,0.3,1.18,2.38, -0.18,-0.5,-0.5,-0.18,0.46,1.42, 0.22,-0.34,-0.58,-0.5,-0.1,0.62, 0.78,-0.02,-0.5,-0.66,-0.5,-0.02, 1.5,0.46,-0.26,-0.66,-0.74,-0.5, , mat_val_zXY=0, init_tuvw4=1,2,1,2, mat_crsKK=0;FILE *p;int main()int i,j,x,y,kmin,tmp=0;double tmpval;int getval_z(double,double,int,int);int leasquare();void result_out(int); p=fopen(Result.txt,w+); fprintf(p,1、差值得到的数表为:n); fclose(p); for(i=0;iX;i+) for(j=0;jY;j+) tmp+=getval_z(0.08*i,0.5+0.05*j,i,j); if(!tmp) printf(迭代求解 z=f(x,y) 完毕。n); else printf(迭代超过最大次数,计算结果可能不准确!n); if(kmin=leasquare() printf(近似表达式已求出!n); for(i=0;i8;i+) for(j=0;j5;j+) tmp+=getval_z(0.1*(i+1),0.5+0.2*(j+1),i,j); if(!tmp) printf(迭代求解 z=f(x*,y*) 完毕。n); for(x=0;x8;x+) for(y=0;y5;y+) tmpval=0; for(i=0;ikmin;i+) for(j=0;jkmin;j+) tmpval=tmpval+mat_crsij*pow(0.1*(x+1),i)*pow(0.5+0.2*(y+1),j); p=fopen(Result.txt, at+); fprintf(p,x*%d=%f, y*%d=%f: f(x*%d,y*%d)=%.12le, p(x*%d,y*%d)=%.12len,x+1,0.1*(x+1),y+1,0.5+0.2*(y+1),x+1,y+1,mat_val_zxy,x+1,y+1,tmpval); fclose(p); printf(结果见Result.txt!); getchar(); else printf(近似表达式未求出,增大K值后重试n); getchar(); /牛顿迭代法求方程的解int getval_z(double x,double y,int i,int j) double vec_tuvwM,vec_deltaM,fdaoMM,fM,mo_k,mo_delta_k,shang,t,u; int n=0,k,flag_max,flag_stat; void solve(double fdaoMM,double vec_deltaM,double fM); double interpolation(double,double); flag_stat = 1; for(k=0;kM;k+) vec_tuvwk=init_tuvwk; do f0=-1.0*(0.5*cos(vec_tuvw0)+vec_tuvw1+vec_tuvw2+vec_tuvw3-x-2.67); f1=-1.0*(vec_tuvw0+0.5*sin(vec_tuvw1)+vec_tuvw2+vec_tuvw3-y-1.07); f2=-1.0*(0.5*vec_tuvw0+vec_tuvw1+cos(vec_tuvw2)+vec_tuvw3-x-3.74); f3 =-1.0*(vec_tuvw0+0.5*vec_tuvw1+vec_tuvw2+sin(vec_tuvw3)-y-0.79); fdao00=-0.5*sin(vec_tuvw0); fdao01=1; fdao02=1; fdao03=1; fdao10=1; fdao11=0.5*cos(vec_tuvw1); fdao12=1; fdao13=1; fdao20=0.5; fdao21=1; fdao22=-1*sin(vec_tuvw2); fdao23=1; fdao30=1; fdao31=0.5; fdao32=1; fdao33=cos(vec_tuvw3); solve(fdao, vec_delta, f); flag_max = 0; for(k=1;kfabs(vec_deltaflag_max) flag_max=k; mo_delta_k=vec_deltaflag_max; flag_max=0; for(k=1;kfabs(vec_tuvwflag_max) flag_max=k; mo_k=vec_tuvwflag_max; shang=fabs(mo_delta_k/mo_k); if(shangEPSL) t=vec_tuvw0+vec_delta0,u=vec_tuvw1+vec_delta1; flag_stat=0; break; else for(k=0;kM;k+) vec_tuvwk+=vec_deltak; while(n+ = L); if(!flag_stat) p=fopen(Result.txt, at+); fprintf(p,x%d=%f, y%d=%f: f(x%d,y%d)=%.12len,i,0.08*i,j,0.5+0.05*j,i,j,mat_val_zij=interpolation(u,t); fclose(p); return flag_stat;/消元法求方程的解void solve(double fdaoMM,double vec_deltaM,double fM) int i,j,k,ik;double tmp,mik;for(k=0;kM-1;k+) ik = k; for(i=k;iM;i+) if(fabs(fdaoikk)fabs(fdaoik) ik=i; for(j=k;jM;j+) tmp=fdaokj;fdaokj=fdaoikj;fdaoikj=tmp; tmp=fk;fk=fik;fik=tmp; for(i=k+1;iM;i+) mik=fdaoik/fdaokk; for(j=k;j=0;k-) tmp=0; for(j=k+1;jM;j+) tmp+=fdaokj*vec_deltaj; vec_deltak=(fk-tmp)/fdaokk; /二次插值double interpolation(double u, double t) int r,i,j,k; double coe_u3,coe_t3,z; z=0; r=int(fabs(t/0.2)+0.5); k=int(fabs(u/0.4)+0.5); if(r=0) r=1; if(r=5) r=4; if(k=0) k=1; if(k=5) k=4; coe_u0=(u-mat_uk)*(u-mat_uk+1)/(mat_uk-1-mat_uk)/(mat_uk-1-mat_uk+1); coe_u1=(u-mat_uk-1)*(u-mat_uk+1)/(mat_uk-mat_uk-1)/(mat_uk-mat_uk+1); coe_u2=(u-mat_uk-1)*(u-mat_uk)/(mat_uk+1-mat_uk-1)/(mat_uk+1-mat_uk); coe_t0=(t-mat_tr)*(t-mat_tr+1)/(mat_tr-1-mat_tr)/(mat_tr-1-mat_tr+1); coe_t1=(t-mat_tr-1)*(t-mat_tr+1)/(mat_tr-mat_tr-1)/(mat_tr-mat_tr+1); coe_t2=(t-mat_tr-1)*(t-mat_tr)/(mat_tr+1-mat_tr-1)/(mat_tr+1-mat_tr); for(i=r-1;i=r+1;i+) for(j=k-1;j=k+1;j+) z+=coe_ti-r+1*coe_uj-k+1*mat_ztuij; return z;/曲面拟合int leasquare() int x,y,i,j,k,k_max,k_now; double vec_xX,vec_yY,mat_btbKK=0,mat_gtgKK=0,mat_btbbtKX,mat_btbbtuKY,tmp,sigma; void inv(double matrixKK,int); k_now=1; for(i=0;iX;i+) vec_xi=0.08*i; for(j=0;jY;j+) vec_yj=0.5+0.05*j; do for(i=0;ik_now;i+) for(j=0;jk_now;j+) tmp=0; for(k=0;kX;k+) tmp+=pow(vec_xk,i)*pow(vec_xk,j); mat_btbij=tmp; inv(mat_btb,k_now); for(i=0;ik_now;i+) for(j=0;jk_now;j+) tmp=0; for(k=0;kY;k+) tmp+=pow(vec_yk,i)*pow(vec_yk,j); mat_gtgij=tmp; inv(mat_gtg, k_now); for(i=0;ik_now;i+) for(j=0;jX;j+) tmp=0; for(k=0;kk_now;k+) tmp+=mat_btbik*pow(vec_xj,k); mat_btbbtij=tmp; for(i=0;ik_now;i+) for(j=0;jY;j+) tmp=0; for(k=0;kX;k+) tmp+=mat_btbbtik*mat_val_zkj; mat_btbbtuij=tmp; for(i=0;ik_now;i+) for(j=0;jk_now;j+) tmp=0; for(k=0;kY;k+) tmp+=mat_btbbtuik*pow(vec_yk,j); mat_btbij=tmp; for(i=0;ik_now;i+) for(j=0;jk_now;j+) tmp=0; for(k=0;kk_now;k+) tmp+=mat_btbik*mat_gtgkj; mat_crsij=tmp; sigma=0; for(x=0;xX;x+) for(y=0;yY;y+) tmp=0; for(i=0;ik_now;i+) for(j=0;jk_now;j+) tmp+=mat_crsij*pow(0.08*x,i)*pow(0.5+0.05*y,j); sigma+=(tmp-mat_val_zxy)*(tmp-mat_val_zxy); p=fopen(Result.txt, at+); fprintf(p,k=%d =%.12lenn,k_now-1,sigma); fclose(p); if(sigmaSIGSUM) p=fopen(Result.txt, at+); fprintf(p,Crs%d%d=nn,k_now,k_now); for(i=0;ik_now;i+) fprintf(p,); for(j=0;jk_now-1;j+) fprintf(p,%.12le, , mat_crsij); fprintf(p,%.12le, mat_crsik_now-1); fprintf(p,n); fprintf(p,n); fclose(p); return k_now; while(k_now+K);return 0; /dolittle分解void inv(double matrixKK, int rank) int i,j,k,t,n; double mat_tmpKK=0,matrix_bakKK,vec_tmpK,vec_xK=0,vec_dxK=0,vec_rK=0,tmp,max_x,max_dx; void preprocess(double KK,double K,int); void LUDecomposition(double KK,int); void LUSolve(double KK,double K,double K,int); n=0; for(i=0;irank;i+) for(j=0;jrank;j+) matrix_bakij=mat_tmpij=matrixij; vec_tmpi=0; LUDecomposition(mat_tmp,rank); for(i=0;irank;i+) if(i=0) vec_tmpi=1; else vec_tmpi-1=0; vec_tmpi=1; LUSolve(mat_tmp,vec_x,vec_tmp,rank); while(n+=3) for(j=0;jrank;j+) tmp=0; for(t=0;trank;t+) tmp+=matrix_bakjt*vec_xt; vec_rj=vec_tmpj-tmp; LUSolve(mat_tmp,vec_dx,vec_r,rank); max_x=vec_x0,max_dx=vec_dx0; for(j=0;jmax_x) max_x=vec_xj; if(vec_dxjmax_dx) max_dx=vec_dxj; for(j=0;jrank;j+) vec_xj+=vec_dxj; for(j=0;jrank;j+) matrixji=vec_xj; /改变条件数void preprocess(double matrixKK,double vec_tmpK,int rank) int i,k; double tmp; for(i=0;irank;i+) tmp=matrixi0; for(k=0;ktmp) tmp=matrixik; for(k=0;krank;k+) matrixik/=tmp; vec_tmpi/=tmp; /LU分解void LUDecomposition(double matrixKK,int rank) int i,j,k,t; double tmp; for(k=0;krank;k+) for(i=k;irank;i+) tmp=0; for(t=0;tk;t+) tmp+=matrixit*matrixtk; matrixik-=tmp; if(krank-1) for(j=k+1;jrank;j+) tmp=0; for(t=0;tk;t+) tmp+=matrixkt*matrixtj; matrixkj=(matrixkj-tmp)/matrixkk; else /求解矩阵的逆void LUSolve(double matrixKK,double vec_xK,double vec_tmpK,int rank) int i,j,t; double tmp; vec_x0=vec_tmp0/matrix00; for(i=1;irank;i+) tmp=0; for(t=0;t=0;i-) tmp=0; for(t=i+1;trank;t+) tmp+=matrixit*vec_xt; vec_xi-=tmp; 三、 运算结果:1、差值得到的数表为:x0=0.000000, y0=0.500000: f(x0,y0)=4.465040184799e-001x0=0.000000, y1=0.550000: f(x0,y1)=3.246832629274e-001x0=0.000000, y2=0.600000: f(x0,y2)=2.101596866825e-001x0=0.000000, y3=0.650000: f(x0,y3)=1.030436083159e-001x0=0.000000, y4=0.700000: f(x0,y4)=3.401895562658e-003x0=0.000000, y5=0.750000: f(x0,y5)=-8.873581363801e-002x0=0.000000, y6=0.800000: f(x0,y6)=-1.733716327497e-001x0=0.000000, y7=0.850000: f(x0,y7)=-2.505346114666e-001x0=0.000000, y8=0.900000: f(x0,y8)=-3.202765063876e-001x0=0.000000, y9=0.950000: f(x0,y9)=-3.826680661097e-001x0=0.000000, y10=1.000000: f(x0,y10)=-4.377957667384e-001x0=0.000000, y11=1.050000: f(x0,y11)=-4.857589414438e-001x0=0.000000, y12=1.100000: f(x0,y12)=-5.266672548835e-001x0=0.000000, y13=1.150000: f(x0,y13)=-5.606384797965e-001x0=0.000000, y14=1.200000: f(x0,y14)=-5.877965387677e-001x0=0.000000, y15=1.250000: f(x0,y15)=-6.082697790899e-001x0=0.000000, y16=1.300000: f(x0,y16)=-6.221894528764e-001x0=0.000000, y17=1.350000: f(x0,y17)=-6.296883781856e-001x0=0.000000, y18=1.400000: f(x0,y18)=-6.308997600028e-001x0=0.000000, y19=1.450000: f(x0,y19)=-6.259561525454e-001x0=0.000000, y20=1.500000: f(x0,y20)=-6.149885466094e-001x1=0.080000, y0=0.500000: f(x1,y0)=6.380152265102e-001x1=0.080000, y1=0.550000: f(x1,y1)=5.066117551462e-001x1=0.080000, y2=0.600000: f(x1,y2)=3.821763692772e-001x1=0.080000, y3=0.650000: f(x1,y3)=2.648634911536e-001x1=0.080000, y4=0.700000: f(x1,y4)=1.547802002848e-001x1=0.080000, y5=0.750000: f(x1,y5)=5.199268349093e-002x1=0.080000, y6=0.800000: f(x1,y6)=-4.346804020491e-002x1=0.080000, y7=0.850000: f(x1,y7)=-1.316010567885e-001x1=0.080000, y8=0.900000: f(x1,y8)=-2.124310883088e-001x1=0.080000, y9=0.950000: f(x1,y9)=-2.860045510580e-001x1=0.080000, y10=1.000000: f(x1,y10)=-3.523860789794e-001x1=0.080000, y11=1.050000: f(x1,y11)=-4.116554565222e-001x1=0.080000, y12=1.100000: f(x1,y12)=-4.639049115188e-001x1=0.080000, y13=1.150000: f(x1,y13)=-5.092367247005e-001x1=0.080000, y14=1.200000: f(x1,y14)=-5.477611179623e-001x1=0.080000, y15=1.250000: f(x1,y15)=-5.795943883391e-001x1=0.080000, y16=1.300000: f(x1,y16)=-6.048572588895e-001x1=0.080000, y17=1.350000: f(x1,y17)=-6.236734213318e-001x1=0.080000, y18=1.400000: f(x1,y18)=-6.361682484133e-001x1=0.080000, y19=1.450000: f(x1,y19)=-6.424676566900e-001x1=0.080000, y20=1.500000: f(x1,y20)=-6.426971026996e-001x2=0.160000, y0=0.500000: f(x2,y0)=8.400813957651e-001x2=0.160000, y1=0.550000: f(x2,y1)=6.997641656726e-001x2=0.160000, y2=0.600000: f(x2,y2)=5.660614423514e-001x2=0.160000, y3=0.650000: f(x2,y3)=4.391716081175e-001x2=0.160000, y4=0.700000: f(x2,y4)=3.192421380407e-001x2=0.160000, y5=0.750000: f(x2,y5)=2.063761923874e-001x2=0.160000, y6=0.800000: f(x2,y6)=1.006385238914e-001x2=0.160000, y7=0.850000: f(x2,y7)=2.060740067835e-003x2=0.160000, y8=0.900000: f(x2,y8)=-8.935402476698e-002x2=0.160000, y9=0.950000: f(x2,y9)=-1.736269688648e-001x2=0.160000, y10=1.000000: f(x2,y10)=-2.507999561599e-001x2=0.160000, y11=1.050000: f(x2,y11)=-3.209322694446e-001x2=0.160000, y12=1.100000: f(x2,y12)=-3.840977350046e-001x2=0.160000, y13=1.150000: f(x2,y13)=-4.403821754175e-001x2=0.160000, y14=1.200000: f(x2,y14)=-4.898811523126e-001x2=0.160000, y15=1.250000: f(x2,y15)=-5.326979655338e-001x2=0.160000, y16=1.300000: f(x2,y16)=-5.689418792921e-001x2=0.160000, y17=1.350000: f(x2,y17)=-5.987265495151e-001x2=0.160000, y18=1.400000: f(x2,y18)=-6.221686297503e-001x2=0.160000, y19=1.450000: f(x2,y19)=-6.393865356972e-001x2=0.160000, y20=1.500000: f(x2,y20)=-6.504993507878e-001x3=0.240000, y0=0.500000: f(x3,y0)=1.051515091801e+000x3=0.240000, y1=0.550000: f(x3,y1)=9.029274308302e-001x3=0.240000, y2=0.600000: f(x3,y2)=7.605802668593e-001x3=0.240000, y3=0.650000: f(x3,y3)=6.247151981455e-001x3=0.240000, y4=0.700000: f(x3,y4)=4.955197560009e-001x3=0.240000, y5=0.750000: f(x3,y5)=3.731340427746e-001x3=0.240000, y6=0.800000: f(x3,y6)=2.576567488723e-001x3=0.240000, y7=0.850000: f(x3,y7)=1.491505594102e-001x3=0.240000, y8=0.900000: f(x3,y8)=4.764698677337e-002x3=0.240000, y9=0.950000: f(x3,y9)=-4.684932320146e-002x3=0.240000, y10=1.000000: f(x3,y10)=-1.343567603849e-001x3=0.240000, y11=1.050000: f(x3,y11)=-2.149133449274e-001x3=0.240000, y12=1.100000: f(x3,y12)=-2.885737006348e-001x3=0.240000, y13=1.150000: f(x3,y13)=-3.554063647857e-001x3=0.240000, y14=1.200000: f(x3,y14)=-4.154913964886e-001x3=0.240000, y15=1.250000: f(x3,y15)=-4.689182499695e-001x3=0.240000, y16=1.300000: f(x3,y16)=-5.157838831247e-001x3=0.240000, y17=1.350000: f(x3,y17)=-5.561910752001e-001x3=0.240000, y18=1.400000: f(x3,y18)=-5.902469305629e-001x3=0.240000, y19=1.450000: f(x3,y19)=-6.180615482412e-001x3=0.240000, y20=1.500000: f(x3,y20)=-6.397468392579e-001x4=0.320000, y0=0.500000: f(x4,y0)=1.271246751481e+000x4=0.320000, y1=0.550000: f(x4,y1)=1.115002018146e+000x4=0.320000, y2=0.600000: f(x4,y2)=9.646077272154e-001x4=0.320000, y3=0.650000: f(x4,y3)=8.203473694749e-001x4=0.320000, y4=0.700000: f(x4,y4)=6.824476781794e-001x4=0.320000, y5=0.750000: f(x4,y5)=5.510852085975e-001x4=0.320000, y6=0.800000: f(x4,y6)=4.263923859018e-001x4=0.320000, y7=0.850000: f(x4,y7)=3.084629956332e-001x4=0.320000, y8=0.900000: f(x4,y8)=1.973571296919e-001x4=0.320000, y9=0.950000: f(x4,y9)=9.310562085941e-002x4=0.320000, y10=1.000000: f(x4,y10)=-4.285992234034e-003x4=0.320000, y11=1.050000: f(x4,y11)=-9.483392529689e-002x4=0.320000, y12=1.100000: f(x4,y12)=-1.785729903640e-001x4=0.320000, y13=1.150000: f(x4,y13)=-2.555537790546e-001x4=0.320000, y14=1.200000: f(x4,y14)=-3.258401501575e-001x4=0.320000, y15=1.250000: f(x4,y15)=-3.895069883634e-001x4=0.320000, y16=1.300000: f(x4,y16)=-4.466382045995e-001x4=0.320000, y17=1.350000: f(x4,y17)=-4.973249517677e-001x4=0.320000, y18=1.400000: f(x4,y18)=-5.416640326994e-001x4=0.320000, y19=1.450000: f(x4,y19)=-5.797564797951e-001x4=0.320000, y20=1.500000: f(x4,y20)=-6.117062881476e-001x5=0.400000, y0=0.500000: f(x5,y0)=1.498321052481e+000x5=0.400000, y1=0.550000: f(x5,y1)=1.334998632066e+000x5=0.400000, y2=0.600000: f(x5,y2)=1.177125123739e+000x5=0.400000, y3=0.650000: f(x5,y3)=1.025024055020e+000x5=0.400000, y4=0.700000: f(x5,y4)=8.789600231743e-001x5=0.400000, y5=0.750000: f(x5,y5)=7.391451087035e-001x5=0.400000, y6=0.800000: f(x5,y6)=6.057448714871e-001x5=0.400000, y7=0.850000: f(x5,y7)=4.788838610666e-001x5=0.400000, y8=0.900000: f(x5,y8)=3.586506258818e-001x5=0.400000, y9=0.950000: f(x5,y9)=2.451022361964e-001x5=0.400000, y10=1.000000: f(x5,y10)=1.382683509285e-001x5=0.400000, y11=1.050000: f(x5,y11)=3.815486540699e-002x5=0.400000, y12=1.100
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 来宾市2025广西来宾市合山市卫生计生监督所招聘编外工作人员1人笔试历年参考题库附带答案详解
- 幼儿园营养配餐及饮食安全标准
- 惠州市2025广东惠州大亚湾经济技术开发区测绘院招聘1人笔试历年参考题库附带答案详解
- 广州市2025广东广州市越秀区发展和改革局招聘辅助人员1人笔试历年参考题库附带答案详解
- 常州市2025年江苏常州市卫生健康委员会直属事业单位招聘非医卫工作人员26人笔试历年参考题库附带答案详解
- 装修逾期及开业违约法律通知模板
- 宁波市2025浙江万里学院公开招聘事业编制人员18名笔试历年参考题库附带答案详解
- 企业八识规矩文化建设实践方案
- 2025商业房产租赁合同终止协议内容
- 2025浙江宁波市杭州湾大桥发展有限公司招聘4人笔试参考题库附带答案详解
- 共青团入团团章知识考试题库300题(含答案)
- 老旧护栏加固施工方案
- 中国资源循环集团有限公司子公司招聘笔试题库2025
- 2025年青海海东通信工程师考试(通信专业实务终端与业务)高、中级考前题库及答案
- 露天煤业安全生产培训课件
- 2025年全国医学基础知识试题(附答案)
- 食堂安全培训课件
- 【课件】角的概念+课件+2025-2026学年人教版(2024)七年+数学级上册+
- 2025年防雷检测专业技术人员能力认定考试题库及答案
- 《房屋市政工程生产安全重大事故隐患判定标准(2024版)》解读
- 美发裁剪理论知识培训课件
评论
0/150
提交评论